
BIRD CALL RECOGNITION WITH ARTIFICIAL NEURAL
NETWORKS, SUPPORT VECTOR MACHINES, AND

KERNEL DENSITY ESTIMATION.
by Derek J. Ross

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Canada

c© Derek J. Ross 2006

i

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions of individuals for
the purpose of scholarly research.

I also authorize the University of Manitoba to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of
scholarly research.

Derek J. Ross 2006

ii

The University of Manitoba requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give your address and the date.

Acknowledgments

First, I would like to thank my advisor Howard Card for skillfully elucidating the inner workings
of the concepts of pattern recognition. I would also like to thank my secondary adviser, Dean
McNeill, for carrying the torch after Howard went on sabbatical, and for providing valuable
advice that helped get this thesis over the finish line. Thank you also to thesis committee members
Dr. P. Yahampath and Dr. J. Anderson for their comments and suggestions.

I thank my wife Rowena and children Darwin and Felix, for their patience and support while I
spent seemingly countless hours working on this degree.

Thank you to Alex McIlraith for his knowledge of pattern recognition, statistics, and biology, and
for practical advice on the art of thesis writing. Thanks go to Rob Berger for his expertise of all
things feathered, and a big thank you to both Rob and Alex for providing the audio data used in
this project, courtesy of their company, Myrica Systems. Thanks also to Brad Brown of Iders Inc.,
for giving me some time off to pursue this degree, and for useful advice regarding this work.

Finally, I’d like to thank many friends who have had an impact on this thesis. Gord McGonigal,
Cam Mayor, Christian Gan, Andrew McKay, Steve Dueck, Shamir Mukhi, Shelley Gagne, Tam
Lam, Richard Burchill, and Chuck Leibert, have all made special contributions.

iii

Abstract

This thesis evaluates artificial neural networks (ANNs), support vector machines (SVMs), and
kernel density estimation of probability (KDE) on the task of classifying ten species of birds from
audio recordings of their calls.

This project had two primary goals. The first goal was to determine if short-term tonal qualities
are adequate for distinguishing bird species. Past research into bird recognition has concentrated
on long-term or global characteristics of bird calls, as opposed to short-term qualities.

The second goal was to compare the performance of the three aforementioned pattern recognition
algorithms. ANNs have been used for bird recognition in past research, but SVMs and KDE have
not been studied in this context.

Recordings were first processed to extract short-term features based on spectral, cepstral, and
amplitude characterstics — global features were ignored. Consideration was given to features that
would be more resistant to environmental noise.

Three classifiers were trained to recognize a species based on audio recordings that had been
separated into frames of 512 samples each. With ANN and SVM, silence and noise frames were
rejected by setting a high discrimination threshold, which was determined by finding the optimal
point on the receiver operating characteristics (ROC) curve. A discrimination threshold proved
problematic with the KDE classifier and was not used.

Recordings from the cross-validation (CV) set were tested by classifying each of the frames as a
species, and then processing the collection of votes to determine the likely species of the
recording. Two postprocessing methods were used.

The first method, simple voting, counted the number of times each species was selected by a
classifier. The species which was most frequently selected was considered to be the winner, and
became the species estimate for the entire call. The second method used the chi-squared
goodness-of-fit test to match the “confusion row” for a recording to a row in the overall confusion
matrix. The row with the lowest χ2 determined the species.

Both methods gave similar average accuracy results, but the chi-test raised the score of the worst

iv

v

performing species, in some cases, by significant amounts, and also reduced the variance of
accuracy across species. The best average accuracy on the CV set was exhibited by an ANN with
100 hidden neurons, with a score of 82% and an accuracy floor of 46%. A figure of merit consisting
of the geometric mean of the average CV accuracy and the CV accuracy floor was used to better
evaluate performance. Using this metric, one of the three SVM implementations was the best,
with an average CV accuracy of 79% and a floor of 63%. KDE performance was comparable to an
ANN with 20 hidden neurons.

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Potential Applications . 1

1.1.1 The Air Industry . 1
1.1.2 Electrical Distribution . 2
1.1.3 Wind Turbines . 2
1.1.4 Night-Flight Monitoring . 3
1.1.5 Entertainment . 3

1.2 Other Recognition Efforts . 3
1.3 Musical Instruments . 5

1.3.1 Tonal Qualities . 5
1.4 ANN, SVM and KDE . 7

2 A Taxonomy of Noises 8
2.1 Low SNR . 8
2.2 Non-Stationary Noise . 8
2.3 High SNR . 9
2.4 Echos and Reverberation . 9
2.5 Environmental Interference . 9
2.6 Equipment Distortion . 10
2.7 Underclassified Calls . 10
2.8 Other Issues . 11

3 Pitch Determination 12
3.1 Algorithm Choice . 12
3.2 The Human Voice . 12
3.3 The Cepstrum . 14
3.4 Human versus Bird Sounds . 14
3.5 Periodicity Determination . 16

vi

CONTENTS vii

3.6 Combining PDAs . 16
3.7 Other Features Used . 18

3.7.1 Derivatives . 18
3.7.2 Amplitude Envelope Frequency . 20

4 Linear Learning 23
4.1 What is Learning? . 23
4.2 Determining the Optimization Problem . 26
4.3 Quadratic Programming . 28

4.3.1 Optimization Problem with Noise . 29

5 Nonlinear Support Vector Machines 31
5.1 Common Kernels . 32
5.2 Kernel Trick and LSVMs . 33
5.3 Support Vectors and Classification . 34
5.4 SVM Implementation . 34

5.4.1 Naive Solution: Gradient Ascent . 35
5.4.2 Chunking and Decomposition . 35
5.4.3 SMO: Sequential Minimal Optimization . 36

6 Artificial Neural Networks 37
6.1 Biological Neurons . 37
6.2 Artificial Neurons . 38
6.3 Single Neuron Computation . 41
6.4 Logistic Descrimination . 41
6.5 Training a Neuron . 42
6.6 Perceptrons . 42
6.7 Steepest Descent and the LMS Algorithm . 43

6.7.1 Steepest Descent . 43
6.7.2 The Least Mean Square Algorithm . 45

6.8 Multilayer Perceptrons and Back Propagation . 46
6.9 Characteristics of Multi-Layer Perceptrons . 46
6.10 Derivation of the Backpropagation Algorithm . 47
6.11 The Mathematics of the Output Layer . 48
6.12 Gradient Descent for Hidden Neurons . 49
6.13 The Two Passes . 51
6.14 Nonlinear Activation Function . 51
6.15 The Learning Rate . 52
6.16 Pattern and Batch Mode . 53
6.17 Stopping Criteria . 53

6.17.1 Gradient Convergence . 53
6.17.2 Accuracy Convergence . 54

CONTENTS viii

6.17.3 Error Target . 54
6.17.4 Hybrid Criteria . 54
6.17.5 Peak Generalization . 54
6.17.6 Constant Training Time . 54
6.17.7 Noise Issues . 55

6.18 Initialization . 55
6.19 Variations on the Delta Rule . 55

6.19.1 Momentum . 56
6.19.2 Bold Driver . 56
6.19.3 Quickprop . 56
6.19.4 Many η’s . 56
6.19.5 Summary of Delta Rule Alternatives . 57

6.20 Neurons in the Hidden Layer . 57

7 Other Statistical Techniques 58
7.1 Kernel Density Estimation . 59
7.2 Chi-Square Test . 61
7.3 Receiver Operating Characteristics . 62
7.4 The Confusion Matrix . 66

8 Pattern Recognition Implementation 67
8.1 Bird Species . 67
8.2 Preprocessing . 69
8.3 Data Sets . 69
8.4 Pattern Recognition . 70

8.4.1 Artificial Neural Network . 71
8.4.2 Support Vector Machines . 71
8.4.3 Kernel Density Estimation . 73
8.4.4 Bandwidth Selection . 75
8.4.5 Recognition . 75

8.5 Postprocessing . 76
8.5.1 Simple Voting . 76
8.5.2 Confusion Matching . 76

9 Results 79
9.1 Introduction . 79

9.1.1 Numeric Results . 79
9.1.2 Caveat on Interpreting Results . 85
9.1.3 Absence of a Test Set . 85
9.1.4 Rejections and Accuracy . 85
9.1.5 Neural Network Training . 85

9.2 Single-Frame Accuracy . 87

CONTENTS ix

9.2.1 Frame Rejection . 88
9.2.2 Frame Accuracy Floor . 88

9.3 Call Accuracy . 88
9.3.1 Call Accuracy Comparison . 90
9.3.2 Call Accuracy Floor . 92

9.4 Median Confusion Matrices . 94
9.5 A Final Figure of Merit . 97
9.6 Speed Issues . 98

9.6.1 Training and Classification Speed . 98
9.6.2 Backpropagation Speed . 98

10 Conclusion 99
10.1 Future Directions . 100

10.1.1 More Species . 100
10.1.2 Different Features . 101
10.1.3 Preprocessing Robustness . 101
10.1.4 Musical Instruments and Beyond . 101
10.1.5 Continuous Processing . 102
10.1.6 More KDE . 102

A Species Description 103

B Choosing Features 107
B.1 Use Well-Known Pre-Processing Methods . 107
B.2 Noise Rejection . 107
B.3 Features Should be Reversible . 107
B.4 Dimensionality Reduction . 108
B.5 Invariance to Amplitude Changes . 108
B.6 Input/Output Space Smoothness and Continuity . 108
B.7 Avoid Binning or Thresholds . 109
B.8 Ease of Implementation . 110
B.9 Avoid Conceptual Cross-Contamination . 110
B.10 Confirm Assumptions with Experiment . 110
B.11 Confidence Metric . 111
B.12 Automated Feature Selection . 112

Bibliography 113

List of Tables

3.1 Features used for recognition . 22

8.1 Bird species used for recognition. 68

9.1 Results for frame recognition. 80
9.2 Frame recognition accuracy for each species. 81
9.3 Frame rejection rate for each species. 82
9.4 Results for call recognition. 83
9.5 Call recognition accuracy for each species. 84

x

List of Figures

3.1 Model of human vocal excitation. 13
3.2 Model of human vocal tract response. 13
3.3 Result of passing pulse-train through filter. 13
3.4 Cepstrum pitch detection . 15
3.5 Blackman-Tukey method . 17
3.6 Signal type based on spectral and cepstral energy. 19
3.7 Amplitude Frequency Extraction . 21

4.1 Phases of Supervised Learning . 24
4.2 Hyperplane Separating a Space . 25
4.3 Hyperplane and Margins. 26
4.4 Determining margin implicitely. 26
4.5 Location of nearest points on opposite margins. 27
4.6 Dataset that is not linearly separable. 29

6.1 Biological neuron . 38
6.2 McCullogh-Pitts neuron . 39
6.3 Unit step function . 39
6.4 Ramp and step function . 40
6.5 The logistic function y = 1/(1 + exp(−x)). 40
6.6 The hyperbolic tangent y = tanh(x). 40
6.7 Linear separability . 43

7.1 ROC curves . 62
7.2 ROC for NN-100 . 64
7.3 ROC for Alder Flycatcher . 65

8.1 Recognition process . 68
8.2 Data set structure . 70
8.3 Neural Network Organization . 71
8.4 SVM grid search . 74
8.5 Recognition process (detailed) . 78

xi

LIST OF FIGURES xii

9.1 Mean squared error during training. 86
9.2 Accuracy during training. 87
9.3 Single frame accuracy. 88
9.4 Single frame accuracy vs. rejection. 89
9.5 Single frame accuracy floor. 89
9.6 Call accuracy with a voting postprocessor. 91
9.7 Call accuracy with a chi-test postprocessor. 91
9.8 Accuracy difference: voting vs chi-test . 92
9.9 Call accuracy floors with voting. 93
9.10 Call accuracy floors with chi-test. 93
9.11 Difference in accuracy floor, voting vs chi-test. 94
9.12 Variance of accuracy, voting vs chi-test . 95
9.13 Median confusion matrix (frames) . 95
9.14 Median confusion matrix (calls) . 96
9.15 Figures of merit for classifiers. 97

A.1 Alder Flycatcher (ALFL) Picture and Spectrogram . 103
A.2 American Crow (AMCR) Picture and Spectrogram . 104
A.3 American Goldfinch (AMGO) Picture and Spectrogram 104
A.4 American Redstart (AMRE) Picture and Spectrogram 104
A.5 American Robin (AMRO) Picture and Spectrogram 105
A.6 Baltimore Oriole (BAOR) Picture and Spectrogram . 105
A.7 Black-Capped Chickadee (BCCH) Picture and Spectrogram 105
A.8 Black-Crested Titmouse (BCTI) Picture and Spectrogram 106
A.9 Barred Owl (BDOW) Picture and Spectrogram . 106
A.10 Blue Jay (BLJA) Picture and Spectrogram . 106

B.1 Simple spectral feature extractor. 109
B.2 Simple spectral feature extractor with ambiguous result. 109
B.3 Simple cepstral feature extractor. 109
B.4 Effect of ambient noise on signal. 111

Chapter 1

Introduction

Since prehistoric times, people have interacted with birds. They have long been utilised as a
source of food. After the invention of agriculture, they were often seen as pests competing for crop
resources. The relationship has continued to evolve ever since.

As humanity and technology spreads across the face of the Earth, interactions, both negative and
positive, between birds and people grow. In recent years, public sentiment towards birds has
changed from something to be killed for fun, food, or profit. Now birds are considered to be
deserving of protection.

Because birds come and go as they please, and cannot (generally) be kept out by fences, scientists
and engineers seek automated ways to determine their presence. Birds, by and large, are a
garrulous lot, so microphones and audio processing equipment could possibly provide this
capability. This thesis investigates that possibility.

1.1 Potential Applications

In this section, various applications that would benefit from automated bird recognition
technology will be discussed.

1.1.1 The Air Industry

Bird strikes with planes cause more than two billion dollars of damage per year in North America,
and sometimes result in accidents that lead to loss of life (Bruder et al., 1998). Birds are a growing
problem at airports for several reasons. First, the migratory bird, and “resident” geese populations

1

CHAPTER 1. INTRODUCTION 2

have been increasing recently due to conservation efforts. Second, the total number of aircraft
flights has been increasing. Third, modern aircraft are being designed to use fewer engines with
larger inlets, leading to a more severe situation if one or more engines is lost due to a birdstrike
(Bruder et al., 1998).

1.1.2 Electrical Distribution

Birds coming into contact with electrical lines and transformers can cause costly power outages,
and kill the birds. Some birds are protected by law, and deaths may result in fines that are
comparable to outage costs (Carlton and Harness, 2001). Birds may also nest on transformers, in
towers, or in substations. Some species, such as woodpeckers, are capable of boring into wooden
utility poles, leading to premature rotting or structural failure (Dennis, 1964).

In fact, the author’s indirect participation (graphic user interface development) with an electrical
company led to his involvement in bird recognition. In 2000, Manitoba Hydro funded a small
research project to develop sound recognition software, along with a unit for distinguishing
between background noise and vocalizations, for the purpose of inexpensively monitoring
wildlife, especially birds. The project had four goals (Berger, 2005):

• Monitor wildlife in potentially sensitive habitats that require a transmission or distribution
line route (i.e., assessment of an area before development);

• Monitor wildlife in problem areas;

• Provide a means for assessing transmission line security risks from potential bird-wire
electrocution or collisions;

• Enhance Manitoba Hydro’s wildlife monitoring and protection program.

1.1.3 Wind Turbines

Bird collisions with fast-moving turbine blades have be getting a lot of press coverage recently.
Wind turbines are increasing in number, and are considered to be an ecologically friendly way to
generate power. Perhaps due to this reason, and the fact that they are a “new” technology, more
attention is given to bird deaths that they cause. Bird interactions with towers has been
investigated by Evans (1998). It seems that birds collide with towers because inclement weather
conditions force them to fly low, or poor visibility causes disorientation, leading them to fly
towards illuminated objects. An automated detection system could react when birds approach, by
adjusting the lighting to make the tower less attractive, or by shutting down the turbines
altogether.

CHAPTER 1. INTRODUCTION 3

1.1.4 Night-Flight Monitoring

Many species of birds give periodic calls when they are migrating at night. Studies with doppler
radar show that there exists a weak, but statistically significant, correlation between flight calls
and the actual quantity of birds (Farnsworth et al., 2004). Thus, flight calls can be used for
ornithological studies and conservation research (Farnsworth, 2005). Some automated recognition
in this area has already been implemented. Skyward-pointing microphones with sound-activated
recorders can capture the calls of passing birds. Some species classification is done manually by
volunteers, but some calls can be detected by heuristic-based processors that scan for short bursts
of acoustic energy in specific frequency ranges. Other heuristics are needed to trigger a shutdown
mode if continuous false detections are caused by raindrops, insects, frogs or mechanical noises.
This research is described in depth by Evans (2005).

1.1.5 Entertainment

Bird watching, or birding, is a popular recreational activity. A device that can assist birders with
indentifying species might be profitable.

1.2 Other Recognition Efforts

Bird call recognition is not a very active field. After a lengthy search, only about a dozen papers
on the topic were found. None of those used either support vector machines or kernel density
estimation for recognition. For brevity, here are descriptions of a few of the better ones.

As mentioned earlier, Evans (2005) developed a heuristic based system. It is designed to detect
specific frequency bursts that are indicative of broad categories of warblers, sparrows, thrushes,
and the Dickcissel. Finer classifications are made by manually inspecting calls with the help of
spectrogram software. This appears to be the only bird call recognition system that is being used
in a real world application.

Härmä and Somervuo (2004) describe a method of classifying the tonal quality of birds songs
based on the presence or absence of harmonics, and the position of the strongest harmonic.

Derégnaucort et al.(2001) used artificial neural networks not for classification, but for
quantification. They trained a four-layer ANN to distinguish between two purebred subspecies of
quail. The feature vector was an entire 128× 64 pixel spectrogram image. Once trained, they put
calls of various quail hybrids into the network, and used the “analog” values of the output
neurons to situate the calls on a two dimensional diagram. This permitted them to explain how a
hybrid’s call is influenced by its progenitors.

CHAPTER 1. INTRODUCTION 4

Finally, a paper that was extremely influential in the development of this thesis, and in fact is an
often cited pioneering work, is by McIlraith and Card (1997). In that paper, the authors describe
two methods of recognition. First, they used the Fourier transform and linear predictive coding to
extract features that were then passed to a backpropagation neural network. Second, they
segmented songs into periods of sound and silence, then used statistical discriptions of the
various elements as features for principal component and quadratic discriminant analysis.
Recognition rates were 82–93% correct.

CHAPTER 1. INTRODUCTION 5

1.3 Musical Instruments

This thesis takes a different approach to the recognition of audio signals. Many other researchers
look at a signal as a whole, then try to classify it based on many characteristics including global
ones. For the example of bird calls, some pertinent global parameters might be:

• Total call duration;

• Number of separate distinct vocalizations in the call;

• Lengths of each distinct vocalization;

• Global averages, such as average frequency or average energy in the signal.

A decision was made to take the opposite approach. Instead of taking a global view, the local view
would be taken, and instantaneous parameters utilized. One reason for this decision was the
personal observation that it is possible to broadly categorize bird calls by listening to brief
excerpts. For example, if given short fragments of a goose call, a crow’s call, and that of a robin, it
is clear which species is which. A robin’s call is a fairly pure tone without harmonics, a crow’s call
is harsh and noisy, and a goose has a familiar honking sound. The human ear can categorize these
calls based on the tonal qualities of the sound.

1.3.1 Tonal Qualities

The “quality” of a sound can be described with many adjectives. One could say that it is pure, or
harsh, or dissonant, or has a particular timbre.

Much research has been done on classifying sounds based on their tonal qualities, specifically in
the field of musical instruments. The goal of much of this research is to automate the transcription
of music.

A good introduction to this topic is Agostini et al., 2001. The authors define six features that are
used to classify a recording of a musical instrument. They are:

1. The zero crossing rate, which is an indication of pitch;

2. The spectral centroid, or the center of gravity of the spectrum;

3. Bandwidth, or the sum of the absolute differences of the spectral amplitude from the
spectral centroid;

4. The harmonic energy percentage, or the percentage of spectral energy that is contained at
multiples of the fundamental frequency, f0;

CHAPTER 1. INTRODUCTION 6

5. The inharmonicity, or the sum of the distances between the actual spectral peaks and the
expected harmonic (multiples of f0) peaks;

6. The harmonic energy skewness, which is an extension of the inharmonicity calculation in
which the distance is multiplied by the spectral energy.

Using the means and standard deviations of these signals, the authors were able to get excellent
recognition (97%) among 27 instruments using Quadratic Discriminant Analysis, and good results
(≈ 78%) with Canonical Discriminant Analysis, k-Nearest Neighbor, and Support Vector
Machines.

Some other examples of instrument recognition techniques were demonstrated by Martin et
al.(1998) who used 31 features including vibrato, tremolo, onset, decay and odd-even harmonic
characteristics, which were then classified using a hierarchical Gaussian model derived with
Fisher multiple discriminant analysis. The accuracy was comparable to human listeners; 99% for
instrumental families and 70% for individual instruments, among 15.

Eronen (2001) used 20 features including the amplitude envelope, amplitude modulation
characteristics, and onset asynchrony (differences in energy development for different
frequencies) and cepstral coefficients, with linear prediction analysis for classification. The results
were mediocre: 77% for instrument families and 35% for individual instruments among 16.

Marques et al.(1999) used linear prediction features, cepstral and mel-cepstral features, fed into
Gaussian Mixture Models and Support Vector Machines, with a resulting 70% accuracy rate
overall for a dataset of 8 instruments.

Ideal Conditions

One important aspect of these papers is that the audio recordings used were very optimal. Each
recording contained only a single instrument and the signal to noise ratio was very high. The
sample databases were CD-quality studio recordings, and were either solo-instrumental
performances or, even simpler, a single tone played on the instrument. The inherent clarity and
noise-free aspect of these recordings permitted the utilization of features that would be useless in
a noisy environment. Two examples are the spectral centroid, which will be biased depending on
the “color” of the background noise (see Section B), and the zero crossing rate, which is sensitive
to Gaussian noise. As we will see later, the unavoidable noisiness of bird recordings limits the
choices for features to use in classification.

CHAPTER 1. INTRODUCTION 7

1.4 ANN, SVM and KDE

It was decided that this thesis should investigate three pattern recognition methods: artificial
neural networks (ANN), support vector machines (SVM), and kernel density estimation (KDE).

ANNs, being a mature field, were chosen to provide a baseline of sorts for comparison. Artificial
neural networks had been studied since the 1940s (Hertz et al., 1991), but were revitalized in 1986
with the release of the work by Rumelhart and McClelland (1986), which described the new
technique of backpropagation, a computationally efficient and powerful training algorithm.

SVMs are a more recent invention (Vapnik, 1998) which, in many cases, give better results than
neural networks (Müller et al., 2001). SVMs were chosen to see how the relatively new field of
structural risk minimization (Vapnik, 1998) compared with the more deeply investigated neural
networks. SVMs were introduced by Vapnik, (1995, 1998) based on work starting in the late
seventies (Vapnik, 1979). Since then, it has proven to be a powerful classifer and has been applied
to the problems of text categorization, bioinformatics, optical character recognition, time-series
prediction, density estimation, and many others (Müller et al., 2001; Campbell, 2002; Burges, 1998).

KDE, a non-parametric statistical technique with a long history (Scott, 1992), was chosen to see
how a simple algorithm compared with more modern classifiers. KDE is usually used to discover
non-obvious characteristics of data distributions. It is not generally applied to pattern recognition
problems, but its simplicity and clarity of concept make it appealing.

Chapter 2

A Taxonomy of Noises

The data set for this project consisted of some 900 bird sounds, categorized into ten species. The
recordings were provided by Alex McIlraith and Rob Berger of Myrica Systems.

To human ears, the quality of the recordings were very good. However, for automated analysis,
signal quality has more stringent requirements to be useful in a pattern recognition system. Before
any sort of processing was done, the recordings were manually sorted through, and calls that were
non-optimal in some respect were discarded. What follows is a list of various elements that might
make a recording unsuitable for processing.

2.1 Low SNR

Probably the most common problem seen was a poor signal to noise ratio (SNR). This would be
expected when attempting to record a rare or solitary species of bird — it is difficult to get close to
the bird, so the call has to be recorded at a great distance, which results in a weak signal that is
overpowered by the background noise. Even a strong call can produce a low SNR if the
background noise is louder than usual due to conditions such as wind or rain. As an aside, the
low-SNR calls gave another example of the capablities of the human brain, as the calls could easily
be perceived when conventional pitch detection techniques fail to extract the signal.

2.2 Non-Stationary Noise

Generally, the background noise can be modeled as a white Gaussian noise source that is filtered
by characteristics of the environment and recording equipment. This filtered noise can be

8

CHAPTER 2. A TAXONOMY OF NOISES 9

described by referring to the noise rainbow and choosing a close match such as pink noise, red
noise, green noise, etc. Once the noise spectrum is known, the signal can be cleaned up by
applying Weiner filtering (Proakis et al., 1996) or spectral subtraction (Boll, 1979). These methods
require that the noise model not change over time, or is stationary.

Some recordings exhibited non-stationary noise. Often, the noise spectrum of the birds calls has at
least one wide “hump.” In most cases the hump stayed put and did not change its center
frequency from frame to frame. For the non-stationary signals, the hump was seen in the
spectrogram to move quickly (on the order of seconds) up and down the frequency spectrum as
time progressed. Physically this can be explained as an effect of the worker changing position
during recording. Objects near the microphone, such as the ground, a tree trunk, or the person
themself, produce a virtual cavity with its own filtering characteristics. As the person moves,
these properties will quickly change, leading to nonstationary background noise.

2.3 High SNR

This was not a problem in this thesis, but in preliminary experimentation, signals which were
loud, clear, and almost free of background noise, were categorized separately by a commercial
data-clustering tool when looking at spectral characteristics. This observation is being conveyed
because it was a counterintuitive result at the time. The “flawless” signal was, in fact, too perfect,
and was thus seen as an outlier (which, compared to the other signals, it was).

2.4 Echos and Reverberation

Generally, echos were not a problem. There were two main types: a strong single echo, which
created a double image in the spectrogram, and a multi-source echo (reverberation), which caused
a smearing out of clear chirps. In early experimentation at isolating individual chirps, it was
found that echos were usually interpreted as additional chirps. Reverberation had the effect of
blending together a sequence of closely-spaced chirps.

2.5 Environmental Interference

This refers to non-noise sounds that interfere with the bird calls. This was another common
problem with the audio samples, and reflected the fact that the birds are not being recorded in a
laboratory, but in the real world, where the researcher has little control over the surrounding
events at the time of the recording.

CHAPTER 2. A TAXONOMY OF NOISES 10

Since the recording equipment in this project was operated by people, it is not unexpected that
human-generated sounds were captured occasionally. Researchers could be heard discussing
birds (among other things), coughing, and changing their position, which resulted in the
microphone clunking against things. Movements generated crumpling or swishing sounds of
clothing being flexed.

The geographic location of the recording also affects the type of interference. In populated areas,
the sounds of machinery become common. Trains, planes, automobiles, lawn mowers, and
construction equipment all generate strong signals that interfere with the bird being observed.

In both rural and urban areas you will find cross-species interference, in which the call of one bird
is punctuated by the chirps of another bird of a different species, or the buzz or croak of an
amphibian or insect. Usually, the interfering call is more distant and weak, so it is obvious to a
human listener which call is which. However, an automated pattern recognition system might
“perceive” the combined sounds to be that of a single bird.

Finally, there is the issue of interference by birds of the same species, but that will be covered in
the section on underclassified calls.

2.6 Equipment Distortion

Usually the recording equipment operated properly. Very few recordings were marred by
distortion. Of those that were, some were caused by the recording gain being set too high, causing
clipping distortion. This would manifest itself as second order harmonics, and the signal would
have a buzzing quality to it.

Some signals showed a strange characteristic of spectral mirroring. When viewed as a
spectrogram, a faint vertically mirrored image of the spectrum could be seen along the top,
upside-down with the zero-frequency component centered at the sample rate of 22.05 kHz. The
source of this unusual distortion has not been fully explained, but in a pure signal processing
sense, this effect would be seen if the original signal was being modulated by a weak 22.05 kHz
“carrier” wave. Since the analog recording equipment used in the field would have no affinity to
that particular frequency, it is suspected that this distortion was introduced when the signal was
converted to a digital format. If the analog-to-digital hardware has a gain that was oscillating
slightly at 22.05 kHz, then this spectral mirroring would appear.

2.7 Underclassified Calls

Most birds have a call repertoire, a variety of distinct sounds that are used in different situations.
For example, a bird might issue an alarm call if it noticed a predator approaching, which would

CHAPTER 2. A TAXONOMY OF NOISES 11

alert other birds nearby. Call repertoires are covered in detail by Marler and Slabbekoorn (2004),
who describe fifteen basic types of calls (not including variations thereof).

In the data set used, the calls were categorized only by species. Thus, any pattern recognition
scheme would have to deduce that each species could generate various styles of calls. In the case
of a neural network or SVM approach this adds an extra burden to the learning process. Thus, to
simplify things, only one style of call was selected (territorial) and others were removed from the
data set. Territorial calls or songs are the most common in the dataset, and are usually the calls
that people associate with a species.

Earlier it was mentioned that birds of the same species sometimes interfered with each other. Such
sounds are not considered to be flawed and unsuitable for analysis. Some birds are naturally
sociable and prone to congregate in flocks. For these species, there is a good chance that a
recording will contain intra-species interference. Rather than discard these sounds, it was felt that
group calls are as legitimate as solitary calls, and should be separated into “flock” and “solitary”
categories.

In summary, the data samples for a species could be classified into the following subcategories in
order to simplify the pattern recognition task:

• Calls in repertoire (Marler and Slabbekoorn, 2004)

– Territorial call;

– Courtship call;

– Alarm call;

– etc.;

• Simultaneous calls of flock.

This is only a subset of sounds a bird may produce. Many species have their own vocabulary of
sounds for specific situations and events.

2.8 Other Issues

The data set used in this work had some instances where there were several recordings taken of a
specific bird only a few minutes apart, or an exceedingly long sample in which one bird repeated a
call several times. Since repeated calls by the same individual does not provide a data set that
could be generalized to the species as a whole, these extra calls were removed.

Finally, some recordings might not have a clear specific problem as described in the preceding
sections, but rather a combination of minor flaws that sum up to an unusable signal.

Chapter 3

Pitch Determination

With the results of the previous chapter in mind, the next step would be choosing which features
to use, and which algorithm should be used to to extract the features.

One popular feature is pitch, or fundamental frequency (f0). The usefulness of the pitch component
is self-evident, especially for musical instrument detection. Pitch alone can be used to distinguish
between many instruments. To give an obvious example, the sounds of a tuba versus a piccolo can
be classified solely on pitch information.

3.1 Algorithm Choice

Pitch determination, as simple as the procedure may sound, is actually an unsolved problem
(Hess, 1983). A search for “pitch detection” or “pitch determination” on an academic database
will reveal dozens if not hundreds of papers on the topic. Even in the last five years alone, several
dozen papers have been written on novel pitch determination algorithms (PDAs). This topic is
alive and well, for PDAs are important in speech recognition research and human voice
bandwidth compression.

A foundational work on PD is (Hess 1983). Although Hess’ work may seem out of date, the two
main techniques described, autocorrelation PDA and cepstrum PDA, are still in use today, and
perform favorably with newer methods (Cheveigné et al., 2001).

3.2 The Human Voice

Before continuing, it is appropriate to describe how pitch is related to human vocalizations, and
how they differ from bird sounds. As mentioned earlier, modern PDAs concentrate on human

12

CHAPTER 3. PITCH DETERMINATION 13

sounds, so some changes are needed to accomodate bird calls.

In simplification, the human voice is modeled by an excitation signal (from the vocal cords) being
passed through a filter (the throat, nose and mouth). The excitation signal is generally seen as a
sequence of pulses, at some frequency f0 (Figure 3.1).

Figure 3.1: Model of human vocal excitation.

The vocal tract response is generally seen as a multi-pole filter. (Figure 3.2)

Figure 3.2: Model of human vocal tract response.

The resulting spectrum (Figure 3.3) is the well-known result of passing a pulse train through a
filter (Oppenheim et al., 1983).

Figure 3.3: Result of passing pulse-train through filter.

Hence, human vocalization has a power spectrum with a comb-like structure. Ideally, the first
peak is the fundamental frequency. However, in many situations, the first peak is obscured by
noise, or attenuated by extraneous filtering effects. Thus, a simple algorithm that looks for the first
peak will often fail. A more robust method is the double transform, also known as cepstral analysis.

CHAPTER 3. PITCH DETERMINATION 14

3.3 The Cepstrum

The cepstrum seems intuitive enough. When confronted by a power spectrum that has a repeated
periodic sequence of regular peaks, why not just apply the Fourier transform to it to find the
“periodicity” of peaks in the frequency domain? Surprisingly, this novel trick (which has no doubt
been rediscovered many times over) actually has a theoretical underpinning.

Cepstrum pitch detection was first studied in depth in (Noll, 1964). At the time it was the most
reliable PD algorithm, and for many years new PDAs were calibrated against it. Even today,
(Cheveigné et al., 2001) show that cepstral methods are very competitive with newer techniques.

Usually, the cepstrum is defined as

Cepstrum
[
s(t)

]
= F−1

[
log
∣∣∣F
[
s(t)

]∣∣∣
]

. (3.1)

Or: the cepstrum is the inverse Fourier transform of the log of the short-term power spectrum of
the signal. The log operator has the effect of separating the voice source, which is a pulse train,
and the vocal tract filter function so that the pulse sequence appears as a peak at a quefrency (or
lag) in the cepstrum, revealing the period of the pulse train, T0.

In (Hess, 1983) there is much discussion as to whether log is the ideal transfer function before the
inverse Fourier transform is taken. Hess notes that the fourth root, the square root, and an
unaltered magnitude seem to provide better resistance to noise. In this project it found that a
linear transfer function produced the best results during experimentation. Thus, the cepstrum
PDA used in this thesis is:

Cepstrum′
[
s(t)

]
= F−1

[∣∣∣F
[
s(t)

]∣∣∣
]

(3.2)

See Figure 3.4 for a flowchart.

3.4 Human versus Bird Sounds

The typical power spectrum of a non-pathological human speaker has two commonalities. First, it
is rich in harmonics due to the pulse like signal produced by the vocal cords. This allows cepstral
analysis to work effectively. Second, the fundamental frequency ranges from about 50 to 1800 Hz.
These two facts motivate much of the development for PDAs, which means that many robust
PDAs will degrade when confronted by a bird signal.

Compare to human sounds, bird sounds are unconstrained. the pileated woodpecker or the
chickadee produce harmonics-rich sounds. Songbirds produce spectrally pure sinusoids. The
great horned owl squawks at a pitch of 300 Hz, and the Blackpoll warbler sings at 10 kHz (Berger,
2005).

CHAPTER 3. PITCH DETERMINATION 15

Figure 3.4: Flowchart of the cepstrum pitch detection method with pre- and post- processing.

CHAPTER 3. PITCH DETERMINATION 16

Thus, an additional PDA is needed, one that is suited to sinusoidal signals.

3.5 Periodicity Determination

Detection of simple periodicity has a long history in signal analysis. There are several common
algorithms, each with their own advantages and drawbacks. Some are described in (Proakis et al.,
1996) under the subject of power spectrum estimation. The technique used in this thesis is the
Blackman-Tukey method. Discretely, it is defined as

PBT
xx (f) =

M−1
∑

m=−(M−1)

rxx(m)w(m)e−j2π f m (3.3)

Where rxx is autocorrelation, w is the windowing function (usually a triangular Bartlett window),
and M is the number of samples. See Figure 3.5 for a flowchart.

Proakis et al.(1996) shows that the Blackman-Tukey method gives a higher quality of spectral
estimate than either the Bartlett or Welch method. Implementation-wise, the autocorrelation part
may be sped up through use of the Wiener-Khintchine theorem:

rxx(l) F←→ Sxx(w) (3.4)

or
rxx(l) = F

[∣∣∣F
[
s(t)

]∣∣∣
2]

(3.5)

Where rxx is again the autocorrelation and Sxx is the energy spectral density. This allows the full
autocorrelation of the signal to be calculated more quickly with the help of two Fourier transforms.

3.6 Combining PDAs

Now, we have two pitch determination algoritms: the cepstral method, which handles signals rich
in harmonics, and the Blackman-Tukey method, for signals with few spectral peaks. Since bird
sounds could be either one of these types of signals (or somewhere in between), we need some
way to choose a method depending on the signal, or to combine the two methods together in a
logical and useful manner. For this work, very little additional pre-processing was chosen.
Instead, both the spectral and cepstral results were passed to the pattern recognition algorithm,
with the hope that it would find something useful in the information. Specifically, the following
pitch-related parameters were used:

CHAPTER 3. PITCH DETERMINATION 17

Figure 3.5: Flowchart of the Blackman-Tukey method with pre- and post- processing.

CHAPTER 3. PITCH DETERMINATION 18

• Spectral characteristics;

– Total energy of the spectrum;

– Peak characteristics;

∗ Frequency at the peak;
∗ Energy in the peak (+/- one bin);
∗ Normalized energy in peak (peak energy divided by total energy);

• Cepstral characterstics;

– Energy of the cepstrum;

– Cepstral peak characteristics;

∗ Quefrency (lag) of the peak;
∗ Energy in the peak (+/- one bin);
∗ Normalized energy in peak (peak energy divided by total energy).

Normalization and Confidence

The normalized energy parameters are important because they provide a sort of “confidence”
metric to the spectral and cepstral peak estimates. In the best case, the peak would contain all the
energy, and the normalized energy would be 1. In the worst case, say, a signal of white noise, the
normalized peak energy would be close to zero, because most of the energy is spread elsewhere in
the spectrum of cepstrum. In fact, by limiting our observations only to the normalized energies,
we can situate different types of signals in a two dimensional space based on tonal quality, as
shown in Figure 3.6. This parameter simultaneously informs us of the purity, harmonicity, and
noisiness of the signal, and thus may be useful. The tonal quality analysis was restricted to this
level of detail, because the signals available were far too noisy to apply some of the finer
techniques used for musical instrument recognition.

3.7 Other Features Used

3.7.1 Derivatives

All of the pitch-related features discussed previously are numerically differentiated, and these
derivatives are passed on to the pattern recognition algorithm. The motivation for this is based on
the fact that for some birds, the rate of variation of a parameter is important. For example, the
pitch of a warbler’s song is expected to increase and decrease rapidly.

CHAPTER 3. PITCH DETERMINATION 19

Figure 3.6: Signal type based on spectral and cepstral energy.

CHAPTER 3. PITCH DETERMINATION 20

3.7.2 Amplitude Envelope Frequency

Until now, all the features mentioned were instantaneous values which were extracted from small
fragments of the signal, on the order of 10ms in duration. There were no intra-frame features that
gave some information of the (relatively) long-term structure of the bird call. The amplitude
envelope frequency is one way to convert this long-term information into more digestible
single-valued parameters. Figure 3.7 explains the details of the algorithm.

This was motivated by the observation that some birds produce calls which are smooth in
loudness, whereas others are stocatto and repetitive. By looking at a 1.5 second interval of a call,
and determining the periodicity of amplitude variations within that range, we can extract useful
information about the overall structure of the call. Like the pitch detection algorithms, the
envelope frequency includes the normalized peak energy to give a confidence estimate of the
extracted frequency.

As far as the author knows, this feature and algorithm has not been used before in bird (or other
animal) recognition, and is a novel invention in this project.

CHAPTER 3. PITCH DETERMINATION 21

Figure 3.7: Determination of envelope periodicity, also referred to as structural amplitude fre-
quency.

CHAPTER 3. PITCH DETERMINATION 22

FEATURES EXTRACTED FROM AUDIO SIGNAL

Description Formula d
dt
∗

Frequency Domain Parameters

Power in frequency peak plus two adjacent bins PBT
peak =

+1
∑

i=−1
PBT

xx (f BT
peak + i) ‡ Yes

Total power in frame Ptotal = rxx(0) Yes

Normalized peak power PBT
peak/Ptotal Yes

Frequency at peak f BT
peak = arg max

f
PBT

xx (f) † Yes

Cepstral Domain Parameters§

Sum of gamnitude in peak and adjacent bins Gpeak =
+1
∑

i=−1
G(qpeak + i) Yes

Total gamnitude in cepstrum Gtotal = ∑
q

G(q) Yes

Normalized peak gamnitude Gpeak/Gtotal Yes

Quefrency at peak qpeak = arg max
q

(G(q)) Yes

Quefrency at peak back-converted to frequency f CEP
peak = N/(2qpeak) Yes

Multi-Frame Amplitude Envelope Parameters

Amplitude envelope frequency f BT
envel = arg max

f
PBT

envel(f) No

Normalized envelope peak power PBT
envelpeak

/PBT
enveltotal

No

∗ If “Yes”, then an additional feature was created by taking the numerical derivative between frames.
† The function arg max f (x) returns x that gives the maximum value of f (x).
‡ BT indicates the Blackman-Tukey method of power spectrum estimation.
§ Quefrency and gamnitude are the cepstral analogues to frequency and magnitude.

Table 3.1: Features passed to the pattern recognition system.

Chapter 4

Linear Learning

This section provides an introduction to learning systems through a discussion of linear learning
machines. Not only are these easy to understand, easy to train, and useful in their own right, but
they also lay a foundation for artificial neural networks and support vector machines. Linear
learning is well covered in (Cristianini et al., 2000) and (Bishop, 1995).

4.1 What is Learning?

There are two types of learning usually discussed in the field of pattern recognition: unsupervised
and supervised (Haykin, 1994).

Unsupervised learning involves observation of a dataset and consequent extraction of groups (or
clusters) in that data, with no external input specifying the expected classification of any of the
elements of the dataset (Haykin, 1994). Unsupervised learning will not be investigated in this
thesis.

A supervised learning system takes a dataset of observation vectors, and finds a mapping, or
function, that will enable the deduction of some elements of the vectors based on the values of the
other elements. Usually a system is described as taking input, or training, vectors, and
corresponding output, or target, vectors, as a training dataset. Once a system is trained it ideally
will possess the ability to process a new input vector (in the absence of a target vector), and
correctly predict the values of the target. See Figure 4.1 for a schematic representation (Haykin,
1994).

A popular form of pattern recognition is simple binary, or yes/no classification of an input vector.
An input vector, x, might be classified as true if some real function y = f (x) gives a result ≥ 0 ,
and false otherwise. In the case where f (x) is linear, the classifier can be written as

23

CHAPTER 4. LINEAR LEARNING 24

Figure 4.1: Phases of Supervised Learning. This diagram shows N observations, n elements in each
input vector, and m elements in each output vector (Haykin, 1994).

CHAPTER 4. LINEAR LEARNING 25

Figure 4.2: A two-dimensional space separated by a one-dimensional hyperplane specified by w
and b (Cristianini et al., 2000).

f (x) = w · x + b
=

n
∑

i=1
wixi + b (4.1)

Geometrically, this function cuts the n-dimensional hyperspace along an (n− 1) dimensional
hyperplane, where f (x) = 0. See Figure 4.2 for a two-dimensional example that shows a
hyperplane whose normal is defined by w, and which has an offset defined by b. Typically w and
b are known as the weight vector and bias (Haykin, 1994).

Rosenblatt showed in 1956 that such a hyperplane can always classify a linearly separable dataset.
(The definition of linearly separable being “that which can be separated by a hyperplane.”) The
hyperplane can be discovered by the iterative Perceptron Algorithm (Haykin, 1994).

A parameter of interest related to the Perceptron Algorithm is the margin of a point x with respect
to the hyperplane (w, b), and is defined as

γi = (yi)(x ·w + b). (4.2)

Where γi > 0 implies correct classification, and yi is either +1 or −1 depending on the class to
which x belongs. The margin γi is simply the distance from the point x to the hyperplane (w, b)
(Cristianini et al., 2000).

The smallest margin between all points in a training set X and a hyperplane (w, b) is sometimes
referred to as the margin of the hyperplane with respect to the training set (Burges, 1998).

The margin M of a training set X is the greatest possible margin over all hyperplanes (Burges,
1998). A hyperplane producing this maximum is the maximal margin, or optimal hyperplane. Its
margin will be positive for a linearly separable training set (see Figure 4.3).

CHAPTER 4. LINEAR LEARNING 26

Figure 4.3: Hyperplane and Margins (Cristianini et al., 2000).

Figure 4.4: Determining margin implicitely (Moore, 2001).

The support vectors are the subset of the dataset which lie adjacent to the optimal hyperplane at a
distance of the margin (Burges, 1998).

(As an aside, a statistician might note that such an optimal hyperplane, as defined, depends solely
on outliers in the dataset.)

4.2 Determining the Optimization Problem

To continue with our analysis, we will need to know the margin width of a hyperplane (w, b). An
interesting fact is that the margin is implicitly defined by requiring that w · x + b returns either
greater than +1 or less than -1 depending on the class. This extends the concept of a hyperplane
dividing the two classes by adding a “built in” margin (Moore, 2001).

CHAPTER 4. LINEAR LEARNING 27

Figure 4.5: Location of nearest points on opposite margins (Moore, 2001).

We would like to find M, the margin for (w, b), as shown in Figure 4.4. We know that

w · x+ + b = +1 (4.3)

and
w · x− + b = −1. (4.4)

Assume that x+ is on the plus plane, and x− is on the minus plane. Then, the distances from x+

and x− to the hyperplane boundary are

γ+ = (+1)(x+ ·w + b) (4.5)

γ− = (−1)(x− ·w + b) (4.6)

Assume also that x+ is the closest point on the plus plane to x− (see Figure 4.5). The line from x+

to x− is perpendicular to the dividing boundary (w, b), so to get from x− to x+ we have to move
in the direction of w. Thus, x+ = x− + λw for some value of λ.

Now we can take the equation
x+ = x− + λw (4.7)

together with Equation 4.3
w · x+ + b = +1 (4.8)

to get
w · (x− + λw) + b = +1 (4.9)

which reduces down to
λ =

2
w ·w . (4.10)

CHAPTER 4. LINEAR LEARNING 28

Now that we know λ, we can find the actual margin M. From (4.7) we get

λw = x+ − x− (4.11)

then
M = |x+ − x−| = |λw| (4.12)

= λ|w| = λ
√

w ·w. (4.13)

Replacing λ with the result of (4.10) gives

M =
2
√

w ·w
w ·w =

2√
w ·w . (4.14)

Thus, we can determine the margin width of this classifier solely with w. To find the optimal
hyperplane, we want to maximize M (or minimize w ·w) while making sure that all points in the
plus class are at or beyond the plus boundary, such that

x+ ·w + b ≥ +1 (4.15)

and similarly, for points in the minus class,

x− ·w + b ≤ −1 (4.16)

4.3 Quadratic Programming

The numeric technique known as quadratic (or nonlinear) programming (or optimization) is
normally used to find the minimum value of a second order polynomial which is constrained by
inequalities. QP, like its cousin, linear programming, has a long history, having been investigated
since the 1960s (Wright 2004). Many algorithms have been developed and much contemporary
research continues in this field.

One typical formulation of a QP problem is to satisfy the following constraints:

minimize 1
2 wTQw− kTw (4.17)

subject to Xw ≤ c (4.18)

Where Q is a positive definite n× n matrix, k is an n-vector, c is an m-vector, w is the unknown,
and X is an m× n matrix. The optimal hyperplane problem can be converted to a QP problem by

CHAPTER 4. LINEAR LEARNING 29

Figure 4.6: Dataset that is not linearly separable (Moore, 2001).

satisfying (Cristianini et al., 2000):

minimize w ·w− kTw (4.19)

subject to (yi)(x ·w + b) ≥ 1 (4.20)

4.3.1 Optimization Problem with Noise

QP will produce an answer for this objective function and constraints only if the dataset is fully
linearly separable. If some points are on the wrong side of the hyperplane (w, b), then additional
steps must be taken to make this QP problem work. Figure 4.6 shows a noisy training set with two
points in the wrong region of the hyperspace. The training set is not linearly separable.
Fortunately, there is a way around this. We can introduce a cost parameter that is based on how far
the errant datapoints are from their proper margin. Figure 4.6 (Moore, 2001) shows two datapoints
at distances ε1 and ε2 (known as slack variables) from the proper margin. These distances can be
multiplied by a cost parameter C, which produces a new objective function and constraints for the
QP problem:

minimize 1
2w ·w + C

m
∑
i=1

ε i (4.21)

subject to (yi)(x ·w + b) ≥ 1− ε i (4.22)

and ε i ≥ 0 for all i (4.23)

CHAPTER 4. LINEAR LEARNING 30

However, this formulation is not the best for QP tools. The system can be optimized more quickly
if it is converted to the equivalent Wolfe dual problem (Burges 1998) which becomes:

maximize LD
dual lagrangian ≡∑

i
α1−

1
2 ∑

i,j
αiαj yiyj xi · xj (4.24)

subject to 0 ≤ αi ≤ C (4.25)

and ∑
i

αiyi = 0 (4.26)

Once all α1 and yi have been found, w and b can be found by

w =
NS

∑
i=1

αiyi xi (4.27)

and
b = yI(1− ε I)− xI ·wI where I = arg max

i
αi (4.28)

Where NS is the number of support vectors.

In prediction phase, an input vector x can be classified by taking the sign of

f (x) =
NS

∑
i=1

αiyi six + b (4.29)

where si are the support vectors.

Thus, a linear learning machine is able to find an optimal hyperplane for a noisy training set that
is not strictly linearly separable. This is the technique used for linear support vector machines
(LSVMs).

Chapter 5

Nonlinear Support Vector Machines

Now that we have described LSVMs, the next question is, can LSVMs be augmented to handle
datasets where the optimal decision boundary is nonlinear? The answer is yes, and the simplicity
of the solution is striking. It relies on an old kernel equality commonly known as the kernel trick
(Aizerman et al., 1964).

Notice first how data is used in the LSVM problem. Individual values are never used — only the
dot products are taken. Now imagine a mapping from the d-dimensional data space to a higher
dimensional feature space,H, of f dimensions where f > d. This mapping will be called Φ (Burges,
1998). Thus

Φ : R
d → H, where H ∈ R

f and f > d (5.1)

If this mapping is applied to a pair of vectors w and x, then the dot product would be Φ(w) ·Φ(x).

Direct calculation of Φ(w) ·Φ(x) may be intractible in a computational sense if Φ maps to an
extremely high dimensional space. This is alleviated because in some cases, Φ(w) ·Φ(x) may be
represented by a kernel K that is mathematically equivalent, yet requires only the dot product of
the vectors in the original d-dimensional space. Thus,

K(w, x) = Φ(w) ·Φ(x) (5.2)

This kernel trick, in effect, eliminates the need to explicitely calculate a high-dimensional space
with Φ. In fact it allows mapping of the input space to an infinite dimensional feature space.

For example, if d = 2 with the kernel

K(w, x) = (w · x)2 (5.3)

it can be shown, by expanding the dot product above and solving for Φ(·), to correspond to the

31

CHAPTER 5. NONLINEAR SUPPORT VECTOR MACHINES 32

3-dimensional mapping
Φ(x) = (x2

1, x2
2,
√

2 x1x2). (5.4)

To demonstrate, evaluate

Φ(w) ·Φ(x) = (w2
1, w2

2,
√

2w1w2) · (x2
1, x2

2,
√

2x1x2)

= x2
1w2

1 + x2
2w2

2 + 2x1w1x2w2
(5.5)

also evaluate
K(w, x) = (w · x)2

= (w1x1 + w2x2)2

= w2
1x2

1 + 2w1x1w2x2 + w2
2x2

2.
(5.6)

This is equivalent to the earlier expansion, thus demonstrating the kernel trick.

To give an example of an infinite dimensional feature mapping, consider a 1-dimensional (for
simplicity) data vector x being mapped to an infinite dimensional space:

Φ(x) =

(
1, x√

1!
, x2
√

2!
, x3
√

3!
, ...
)

(5.7)

Evaluating the dot product we get

Φ(w) ·Φ(x) =

(
1, w√

1!
, w2
√

2!
, ...
)
·
(

1, x√
1!

, x2
√

2!
, ...
)

(5.8)

= 1 +
wx
1! +

(wx)2

2! +
(wx)3

3! + ... (5.9)

Inspection reveals that this mapping is equivalent to the kernel

K(w, x) = exp(w · x) = exp(wx) (5.10)

Thus the kernel trick can work for infinite dimensional feature spaces.

5.1 Common Kernels

The first kernels investigated with SVMs were the following (Burges, 1998):

Polynomial of degree p,
K(w, x) = (w · x + 1)p (5.11)

Gaussian radial basis function,

K(w, x) = exp
{
−‖w− x‖2

2σ2

}
(5.12)

CHAPTER 5. NONLINEAR SUPPORT VECTOR MACHINES 33

and the hyperbolic tangent or sigmoid,

K(w, x) = tanh(κw · x− δ) (5.13)

The hyperbolic tangent is interesting in that it lets the SVM simulate a neural network. Plugging
the tanh kernel into the trained SVM classifer (Equation 5.21) we get

f (x) =
NS

∑
i=1

αiyi tanh(κsi · x− δ) + b (5.14)

where NS is the number of support vectors and si are the support vectors. This is the same as a
neural network with NS hidden neurons, each of which has d weights where d is the
dimensionality of the dataset, passed to a linear output neuron with NS weights.

Not every function can be used in an SVM in this manner. It must meet Mercer’s condition
(Burges, 1998) to be a valid kernel. In particular, there exists a mapping and an expansion

K(w, x) = ∑
i

Φ(w)iΦ(x)i (5.15)

if and only if, for any g(w) such that
∫

g(w)2dw is finite (5.16)

then ∫
K(w, x) g(w)g(x) dwdx≥ 0. (5.17)

The hyperbolic tangent does not always satisfy Mercer’s condition, but still may be used in an
SVM. If a given training set results in a kernel matrix that is positive semidefinite Hessian, then
the SVM will converge perfectly well.

5.2 Kernel Trick and LSVMs

The kernel trick lets the QP algorithm be modified so that, whenever a dot product is taken, it can
be replaced with the kernel. Thus, the QP problem becomes

minimize 1
2K(w, w) + C

m
∑
i=1

ε i (5.18)

subject to (yi)(K(w, x) + b) ≥ 1− ε i (5.19)
and ε i ≥ 0 for all i. (5.20)

Now, instead of finding the optimal hyperplane in the original data space (which might not be
linearly separable) an optimal hyperplane can be found in the higher dimensional space. The

CHAPTER 5. NONLINEAR SUPPORT VECTOR MACHINES 34

kernel trick keeps the QP computations tractible (Moore, 2001).

5.3 Support Vectors and Classification

In an LSVM, the support vectors are the subset of the dataset which lie adjacent to the optimal
hyperplane at a distance of the margin, and, if slack variables are being used, those that lie in the
wrong section of the hyperspace. The support vectors alone are enough to define the hyperplane
and margin. (These vectors could be thought of as supporting the hyperplane.) Slack parameters
are needed because, otherwise, it might be impossible to find the optimal hyperplane in a high
dimensional feature space. We can use the same method to classify non-training data points as
was used earlier, but with kernels instead:

f (x) =
NS

∑
i=1

αiyi K(si, x) + b (5.21)

were NS is the number of support vectors, and si are the support vectors. Taking the sign of f (x)

gives the class (Burges, 1998).

5.4 SVM Implementation

The quadratic programming aspect of the SVM algorithm can be solved by straight-forward
application of many pre-existing QP packages that use Newton’s method, conjugate gradient, or
primal dual methods. For small training sets, the QP problem can be solved analytically, which
has a worst case computational complexity of order N3

S (inversion of the Hessian), where NS is the
number of support vectors (Burges, 1998). For larger training sets, numeric methods must be
used. One problem with using conventional QP techniques is that the entire kernel matrix, which
grows quadratically with the number of training samples, must be stored in memory. For
example, the kernel matrix for the training data in this project would require over 120 MB of
memory using these methods.

As a result, novel SVM techniques have been created that reduce computational complexity. The
major ones will be describe here.

Recall that the optimization problem (Cristianini et al., 2000) is:

maximize W(α) =
`

∑
i=1

αi −
1
2

`

∑
i

`

∑
j

αiαj yiyj K(xi, xj) (5.22)

subject to
`

∑
i=1

αiyi = 0 (5.23)

CHAPTER 5. NONLINEAR SUPPORT VECTOR MACHINES 35

and 0 ≤ αi ≤ C, i = 1...` (5.24)

Where y specifies the class and is either -1 or +1, x is an input vector, ` is the size of the training
set, and C < ∞ for the 1-norm soft margin case.

5.4.1 Naive Solution: Gradient Ascent

Simple numerical gradient descent can be used to follow the parabolic surface towards the unique
global maximum (Cristianini et al., 2000). A learning rate η is needed to update the vector α for
each iteration, and must be properly sized to allow for timely convergence, yet prevent oscillatory
behavior. The step size for individual elements of α is given by

δαt
i = η

∂W(α
t)

∂αi
(5.25)

Where t indicates the iteration, and the i subscript shows that the multi-dimensional problem is
reduced to a sequence of single-dimensional ones. This technique is not optimal with respect to
speed, but it works well for datasets up to a few thousand points. The linear constraint ∑ αiyi = 0
causes a problem. At least two α values must be changed simultaneously to keep the system from
leaving the feasible region. This is the basis of sequential minimal optimization (SMO).

5.4.2 Chunking and Decomposition

The chunking and decomposition techniques reduce memory requirements by breaking the problem
down into smaller sub-problems (Cristianini et al., 2000).

Chunking

The simplest heuristic is known as “chunking.” Here, a small subset, or “chunk,” of the training
set is used to train an SVM. Once trained, the support vectors are kept, and the remainder of the
training data is tested with the SVM. The points that give the worst results are kept, then a new
SVM is trained using these points and the previous support vectors as the training set. The
process is repeated until some stopping criteria is reached.

Decomposition

Chunking might fail because the kernel matrix may grow too large. Decomposition is a more
sophisticated method inspired by chunking. This algorithm updates a fixed number of αi values
while the rest are kept constant. A small subset of training points are used as the active set.

CHAPTER 5. NONLINEAR SUPPORT VECTOR MACHINES 36

Whenever a new training point is added to the active set, another one is removed. The goal is to
optimize the global problem by looking at only a subset of the training data at any time.

Chunking and decomposition have not been theoretically proven to converge, but in practise, they
work well and permit training sets of tens of thousands of points.

5.4.3 SMO: Sequential Minimal Optimization

Sequential minimal optimization (SMO) is an extreme reduction of the decomposition method to a
minimal subset of only two points per iteration (Platt, 1998). The benefit of this is that this
minimal subset can be solved analytically without the need of a QP solver.

With each iteration, SMO uses a simple heuristic (based on constraint violation) to choose two
points, αi and αj, to optimize. All other parameters are assumed to be fixed, and new optimal
values of αi and αj are determined analytically, after which α is updated.

Compared to other methods, SMO needs more iterations to converge, but each iteration is so fast
that the algorithm shows a speedup of orders of magnitude. Other qualities of this method are
that it does not need a kernel matrix stored in memory, and also does not need any sort of QP
package included as part of the algorithm.

The LIBSVM software package used in this project is based on the SMO algorithm (Chang and
Lin, 2005).

Chapter 6

Artificial Neural Networks

A great deal of the research into pattern recognition has been inspired by the workings of the
human brain. As such, there have been many attempts to artificially simulate the biological
processes that lead to intelligent behavior. At one end of the artificial intelligence spectrum is the
field of symbolic reasoning, which attempts to synthesize intelligence through manipulation of
high-level cognitive concepts. At the other end, you have the reductionists — those who believe
that intelligence can be created by emulating the brain at the level of the smallest building blocks:
namely, the neurons.

6.1 Biological Neurons

Neurons, the fundamental structure of the brain, were first described by Cajál in 1911 (Sdorow,
1990). Since then, scientists have discovered many different types of neurons, each of which has a
distinct purpose in the brain. In general, a neuron is composed of the following parts (Sdorow,
1990):

• The cell body (or soma), the structural and biochemical center of the neuron;

• The dendrites, branch like receptors on the cell body;

• The axon, an extremely long (relatively speaking) conduit for channeling signals;

• And, the synaptic terminals, a branch-like structure extruding from the end of the axon.
These terminals transmit messages to other neurons, muscles, etc. Figure 6.1 shows a
simplified diagram of a neuron.

37

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 38

Figure 6.1: Simplified diagram of a biological neuron (Sdorow, 1990).

A neuron acts as an integrator of its inputs. It receives multiple excitatory and inhibitory inputs at
the cell body and dendrites, the cell body applies some sort of transfer function to those combined
inputs, and sends the result down the axon to other neurons and muscles, in the form of a pulse.
This is a simplified explanation though. Ongoing research has shown that neurons are far from
simple and are also affected by non-synaptic influences such as biochemicals and drugs.

6.2 Artificial Neurons

A simplified neural model, one that was influential for decades to come, was proposed by
McCullogh and Pitts in 1943. In this model, a neuron multiplies the inputs by weights, calculates
the sum, and applies a threshold. The result of this computation would then be transmitted to
subsequent neurons. The McCullogh-Pitts neuron has been generalized (Hertz et al., 1991) to

yi = f
(

∑
k

wikxk + µi

)
(6.1)

where xk are inputs to the neuron i, wik are weights attached to the inputs, µi is a threshold, offset
or bias, f (·) is a transfer function and yi is the output of the neuron. Figure 6.2 shows a diagram of
a generalized McCullogh-Pitts neuron.

The transfer function f (·) can be anything. It could be linear, i.e., y = x, in which case the neuron
simply takes a dot product x ·w. Several such neurons in a layer will calculate a matrix
multiplication. The function f (·) could be a non-smooth nonlinear function, such as a unit step
(Figure 6.3), which was the basis of the original McCullogh-Pitts neuron. This transfer function, as

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 39

Figure 6.2: Generalized McCullogh-Pitts neuron (Hertz et al., 1991).

Figure 6.3: The Heaviside unit step function (Hertz et al., 1991).

simple as it may be, gives these neurons the ability to emulate basic boolean functions such as
AND, OR, NAND, etc. The function f (·) could also be piecewise linear, like a unit step with a
ramp segment connecting the 0 and 1 parts (Figure 6.4). The disadvantage of these functions is
that they are not differentiable, and thus not suited to automatic learning.

The most useful transfer functions for artificial neurons are nonlinear and differentiable. The
iconic example is the sigmoid or logistic function, y = 1/(1 + exp(−x)) (see Figure 6.5). The
hyperbolic tangent, y = tanh(x) (Figure 6.6) is also commonly used, and in fact it is just a scaled
and shifted sigmoid function.

These functions can easily be used for training with error-backpropagation (Section 6.8) because
there is a derivative everywhere. The sigmoid curve also has a “squishing” effect, so that
extremely high or low input values have only a minor effect on the output, which is
asymptotically limited to the range (0, 1).

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 40

Figure 6.4: A piecewise linear function combining a ramp with a unit step.

Figure 6.5: The logistic function y = 1/(1 + exp(−x)).

Figure 6.6: The hyperbolic tangent y = tanh(x).

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 41

6.3 Single Neuron Computation

What kinds of computation is a single artificial neuron capable of? (For the remainder of this
section, Attention will be given to neurons with a sigmoid activation function. A McCullogh-Pitts
neuron can be approximated as a sigmoidal neuron by multiplying the result of the summation by
a large number.)

Functionally, a neuron takes an n-dimensional input vector and maps it to a single real value.
Specifically

yi = f
(

∑
x

wikxk + µi

)
= f (wi · x + µi) (6.2)

Provided that f (·) has an inverse, we can rewrite that as

f−1(yi) = wi · x + µi. (6.3)

The geometrical consequence of this is that the input space is bisected by an (n− 1) dimensional
plane. See Section 4 for more information. When f (·) is a sigmoid, the separating hyperplane is
commonly considered to be a plane along where yi = 1/2, which is the value of the sigmoid
function at the origin. In the earlier discussion, the hyperplane was seen as a strict delimiter of
membership. Points at opposite sides of the hyperplane are seen as occupying different classes.
The sigmoid function allows a more statistical type of classification, rather than a hard binary
“yes/no” or “true/false.” Intuitively, this makes sense; on the boundary points of the hyperplane,
membership is 1/2, which implies that points in that area are equally likely to be a member of
either class. Near the boundary, the sigmoid function gives values near 1/2, indicating that the
point belongs in one of the classes — but the uncertainty is high. Finally, the farther you get from
the hyperplane, the closer the sigmoid function goes to either 0 or 1, indicating a high confidence.
This observation has a basis in statistics, and is known as logistic discrimination (Bishop, 1995).

6.4 Logistic Descrimination

Consider two classes that have multivariate Gaussian distributions, and identical covariance
matrices Σ. The probability that a point x is a member of class Ck is

p(x|Ck) =
1

(2π)d/2|Σ|1/2 exp
{

1
2(x− µk)

T
Σ
−1(x− µk)

}
(6.4)

where d is the dimension of the data and µk is the mean of the distribution.

We can apply Bayes’ theorem to find the posterior probability x is a member of class C1:

P(C1|x) =
p(x|C1)P(C1)

p(x|C1)P(C1) + p(x|C2)P(C2)
(6.5)

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 42

=
1

1 + exp(−a) (6.6)

where
a = ln

[p(x|C1)P(C1)
p(x|C2)P(C2)

]
. (6.7)

This result justifies the behavior of a neuron with a sigmoid activation function. It shows that for a
common type of discrimination problem, a neuron can produce an output that is identical to the
posterior probability of an input vector belonging to a specific class (Bishop, 1995).

6.5 Training a Neuron

For simple problems, it is possible to scrutinize the data and manually determine which weights
are needed to give the desired behavior. For example, this process can be done to create boolean
logic functions with McCullogh-Pitts neurons. For more complicated neural processing problems,
the optimal weights are not obvious. An automatic procedure is needed which will configure the
neuron based on a training dataset.

6.6 Perceptrons

A perceptron is the simplest form of artificial neural network capable of classifying linearly
separable patterns, and was first studied by Rosenblatt in 1958 and 1962. Rosenblatt’s perceptron
was based on the McCullogh-Pitts neuron, in which a weighted sum of inputs is subjected to a
step function such as the unit step (Heaviside) or sign function. Rosenblatt developed an
automatic learning procedure known as the perceptron algorithm. This simple method can be
explained as follows (Haykin, 1994).

The Perceptron Algorithm

1. A training vector x is presented to the perceptron. One of the elements of x is always 1,
which acts as a bias or offset value.

2. The output value of the neuron is evaluated.

3. If x is properly classified, then no changes are made to the weight vector w.

4. If x is misclassified, then w is updated using the rule:

(a) wnew = wold− ηx if w · x > 0 and x belongs to class C0;

(b) wnew = wold + ηx if w · x ≤ 0 and x belongs to class C1.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 43

Where the classes C0 of C1 are indicated when the output of the neuron is 0 or 1 respectively, when
using a step activation function. The value of η is the learning rate parameter. It is a small value
that controls the size of changes to the weight vectors during training.

Rosenblatt proved, in his perceptron convergence theorem, that the perceptron algorithm is
guaranteed to converge and find a solution — but only if the classes in the training set are linearly
separable. See Figure 6.7 for an example.

Figure 6.7: Linearly separable vs. non-linearly separable classes.

The perceptron created a stir in the field of machine learning in the 1960’s. However, the inability
to classify patterns that are not linearly separable was its fatal flaw. Finally, in 1969, Minsky and
Papert elucidated the limitations of the perceptron in their book Perceptrons. They also conjectured
that multilayer perceptrons would be a “sterile” area of research. History has proven them wrong,
but their influential book set ANN research back by several years.

6.7 Steepest Descent and the LMS Algorithm

The least mean square (LMS) algorithm is a very simple technique for linear adaptive filters. It is
also known as the delta rule or Widrow-Hoff rule (Widrow and Hoff, 1960). The simplicity and
reliability of the LMS algorithm has made it the standard for comparing other adaptive filtering
algorithms. The well-developed field sets the stage for other training algorithms for nonlinear
ANNs, and is relevant to linear neurons, which are identical to linear filters.

6.7.1 Steepest Descent

The basic problem statement with linear filters is (Haykin, 1994):

Given a set of corresponding observations (yi, xi) where yi is a real value and xi is a
vector of reals, can we find an optimal weight vector w that will allow us to predict yi

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 44

with
yi = w · xi (6.8)

such that the error of the predicted yi is minimized?

If di is the desired response, then the error is

ei = di − yi (6.9)

and an overall performance measure is the mean squared error (MSE), J,

J =
1
2 E[e2] (6.10)

where E is the statistical expectation operator, and the factor 1
2 is used for convenience. The

optimal w which minimizes J is known as a Weiner filter.

For certain types of systems, such as a spatial filter, the MSE J surface takes on a multidimensional
“bowl” shape with respect to the vector w. There is only one global (and no local) minima on this
surface, at which point w is optimal. This minima can be solved directly by means of the
Weiner-Hopf equations (Haykin, 1994) which requires matrix inversion of autocorrelation values. It
can also be found by the iterative method of steepest descent, which involves traveling along the
error surface in the direction of the gradient

∇wk J =
∂J

∂wk
, k = 1, 2, ..., p (6.11)

which is the differentiation of the cost function J w.r.t. w. Expanding the equation,

∇wk J = −rdx(k) +
p

∑
j=1

wjrx(j, k) (6.12)

where rdx is the autocorrelation and rx is the cross-correlation. Numerically, the weight vector w
can be adjusted slightly by means of the rule

wknew = wk + δwk, k = 1, 2, ..., p (6.13)

where
δwk = η∇wk J (6.14)

where η is a positive constant called the learning rate parameter. Since steepest descent requires
correlation values to be known, it is not suitable for some environments, such as those where data
samples are disordered. In these situations, we need to use estimates of rx and rdx. The least mean
square algorithm provides these.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 45

6.7.2 The Least Mean Square Algorithm

The least mean square (LMS) algorithm uses instantaneous estimates for the autocorrelation rx
and the cross-correlation rxd (Haykin, 1994). The estimates are

r̂x(i, j) = xjxk (6.15)
r̂dx(k) = xkd (6.16)

When these are plugged back into the the steepest descent algorithm, the rule for updating w
becomes

ŵknew = ŵk + η[d− y]xk, k = 1, 2, ..., p (6.17)

In effect, LMS minimizes the instantaneous squared error.

LMS is also known as the stochastic gradient descent algorithm, because ŵ, the estimate of w,
follows a random trajectory, unlike the steepest descent method which follows a smooth one.

An added benefit of LMS is that it does not rely on the signal being stationary. It can “track” a
signal whose statistics change over time, because it uses instantaneous estimates.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 46

6.8 Multilayer Perceptrons and Back Propagation

Multilayer perceptrons (MLPs) have been used successfully in a wide variety of applications.
They commonly use error back-propagation as the training algorithm, which is a many-layered
generalization of the ubiquitous LMS algorithm.

Backpropagation consists of a forward pass and a backward pass.

In the forward pass, the input vector (training pattern) is presented to the hidden layer. The
outputs are calculated and passed on to the output layer which applies another activation function
to produce the final output vector. In the forward pass, no weights are changed (Haykin, 1994).

The next phase, the backward pass, is where training occurs and the weights are adjusted slightly.
In this phase, the outputs from the forward pass are subtracted from the desired or target values.
This error signal is passed back through the network, and the weights are adjusted incrementally
to reduce the error. This is called error back-propagation (Haykin, 1994).

6.9 Characteristics of Multi-Layer Perceptrons

MLPs have three distinguishing characteristics (Haykin, 1994).

1. The neural activation functions are nonlinear and smooth (differentiable everywhere). A
common function is the logistic curve y = 1/(1 + exp(−x));

2. The network contains one or more hidden layers, that lie between the input and output
layers of the network. These hidden layers allow the network to progressively extract more
meaningful features, thus permitting complex recognition tasks;

3. The neurons in the network are highly interconnected, such that there are a large number of
weights relative to the number of neurons. Typically, every neuron in a layer is connected to
every neuron of the subsequent layer.

These three characteristics, plus the ability to learn, gives ANNs great power. The same
characteristics makes theoretical analysis difficult, because of the nonlinearity and the great
degree of interconnections. Hidden neurons also make the processes harder to observe and
visualize. Furthermore, ANNs do not have unlimited capabilities — the Curse of Dimensionality
requires that preprocessing be done to reduce the dimensionality of the input space (Bishop, 1995).

Like some other important scientific discoveries, backpropagation was discovered independently
by several people. It was first mentioned in Werbos’ Ph. D. thesis in 1975, and rediscovered by
Rumelhard, Hinton and Williams in 1986. Similar generalizations were discovered separately by
both Parker and LeCun in 1985 (Haykin, 1994).

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 47

Backpropagation was a landmark because it was computationally efficient. Although it is not
guaranteed to find a solution to all solvable problems, it works well enough to show that Nimsky
and Papert’s pessimistic prediction of multilayer perceptrons was wrong.

6.10 Derivation of the Backpropagation Algorithm

In backpropagation (Rumelhart et al., 1986; Masters, 1993; Haykin, 1994; Bishop, 1995), the error
signal of an output neuron j at the nth training pattern is defined as

ej = dj(n)− yj(n) (6.18)

where dj is the desired value and yi is the actual output of the neuron. The instantaneous value for
the squared error of neuron j is 1

2 e2
j (n).

The instantaneous value E(n) is the sum of the squared errors obtained by summing the squared
errors of the output layer:

E(n) =
1
2 ∑

j∈C
e2

j (n) (6.19)

where C is the set of all output neurons. The output neurons are the only neurons where errors
can be directly calculated.

If N is the total number of patterns (training examples) in the training set, the average squared error
is obtained by summing E(n) over all n and normalizing for N:

Eav =
1
N

N
∑
n=1
E(n) (6.20)

Eav is a “cost function” for a given training set. The goal of training is to adjust the free parameters
of the network to minimize this cost function. This minimization can be done through a process
similar to the LMS algoritms. A common form of backpropagation is to update the weights after
each pattern is presented to the network. The adjustments are calculated according to the error for
a particular training pattern. The average of all these incremental changes is an estimate of the
true change that would occur if all weights were adjusted at once to minimize the cost function for
the entire training set.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 48

6.11 The Mathematics of the Output Layer

Given a neuron j receiving inputs from the previous layer of neurons, i = 1 to P, the summation
value vj at the neuron (before nonlinearity) is

vj(n) =
P
∑
i=1

wji(n)yi(n) (6.21)

(The threshold or bias input is assumed to be one of the elements of yi with a constant value.)

Thus the output of neuron j at iteration n is

yj(n) = ϕj(vj(n)), where ϕ is a nonlinear function. (6.22)

If we apply the lessons learnt from the LMS algorithm, we can find an equation that gives an
incremental adjustment ∆wji(n) for the weight wji, which is proportional to the instantaneous
gradient

∂E(n)

∂wji(n)
. (6.23)

Using the chain rule, the derivation (Haykin, 1994) follows:

∂E(n)

∂wji(n)
=

∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)
. (6.24)

This gradient represents a sensitivity factor. It shows how influential a specific weight w ji is on the
error, and determines the direction of gradient traversal in weight space for w ji (Haykin, 1994).

Differentiating 6.19 w.r.t. ej(n) we get

∂E(n)

∂ej(n)
= ej(n) (6.25)

Differentiating 6.18 w.r.t. yj(n) we get
∂ej(n)

∂yj(n)
(6.26)

Differentiating 6.22 w.r.t. vj(n) we get

∂yj(n)

vj(n)
= ϕ′(vj(n)) where ϕ′ is the derivative of ϕ. (6.27)

Finally, differentiate 6.21 w.r.t. wji to get

∂vj(n)

∂wji(n)
= yi(n). (6.28)

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 49

Combining equations 6.25 to 6.28 into 6.24 gives

∂E(n)

∂wij(n)
= −ej(n) ϕ′j

(
vj(n)

)
yi(n) (6.29)

The incremental correction ∆wji(n) is defined by the delta rule (Rumelhart et al., 1986)

∆wji(n) = −η
∂E(n)

∂wji(n)
(6.30)

where η is the learning rate parameter of the backpropagation algorithm. The minus sign indicates
that we want to descend the gradient in weight space, to move towards lower error. Furthermore,
using 6.29 in 6.30 gives

∆wji(n) = ηδj(n)yi(n) (6.31)

where the local gradient δj(n) is defined as

δj(n) = − ∂E(n)

∂ej(n)

∂ej(n)

∂yi(n)

∂yi(n)

∂vj(n)
= ej(n) ϕ′

(
vj(n)

)
. (6.32)

From 6.32 we see that the local gradient is the product of the error signal e j(n) and the derivative
ϕ′
(
vj(n)

)
of the associated activation function.

Hence, this is the core of the backpropagation algorithm for a single neuron. Application to output
layer neurons is straightforward since these neurons know what the expected value of y j(n) is and
thus the error signal ej(n).

The problem becomes more difficult for hidden layer neurons, because the error signal is not
obvious.

6.12 Gradient Descent for Hidden Neurons

Because the error signal for a hidden neuron is not directly known, it must be deduced by
recursively scrutinizing all the neurons to which it is connected. As Haykin (1994) says, “this is
where the development of the back-propagation algorithm gets complicated.”

Given Equation 6.32, we can redefine the local gradient δj(n) for hidden neuron j as

δj(n) =
∂E(n)

∂yj(n)

∂yj(n)

∂vj(n)
(6.33)

= − ∂E(n)

∂yj(n)
ϕ′j
(
vj(n)

)
(6.34)

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 50

Applying Equation 6.19 to find the instantaneous error for the hidden layer neurons, we get

E =
1
2 ∑

k∈C
e2

k(n) (6.35)

(This is after we have recalibrated our frame of reference so that hidden neurons are indicated by j
and output neurons by k.)

Differentiating 6.35 w.r.t. the function signal y j(n) we get

∂E(n)

∂yj(n)
= ∑

k
ek

∂ek(n)

∂yj(n)
. (6.36)

Apply the chain rule for the partial derivative ∂ek(n)
∂yj(n)

to get the equivalent form (Haykin, 1994)

∂E(n)

∂yj(n)
= ∑

k
ek(n)

∂ek(n)

∂vk(n)

∂vk(n)

∂yj(n)
. (6.37)

Since we are dealing with the hidden layers, the error

ek(n) = dk(n)− yk(n) (6.38)

becomes
ek(n) = dk(n)− ϕk (vk(n)) where neuron k is an output node. (6.39)

Hence,
∂ek(n)

∂vk(n)
= −ϕ′ (vk(n)) . (6.40)

For neuron k, the summation of the inputs is

vk(n) =
q

∑
j=0

wkj(n)yjn (6.41)

where q is the total number of inputs (excluding the threshold) applied to neuron k. The weight
wk0 is equal to the threshold θk(n) applied to neuron k, and the corresponding input y0 is fixed
at −1.

Differentiating Equation 6.41 gives
∂vk(n)

∂yi(n)
= wkj(n). (6.42)

Then, using Equations 6.40 and 6.37 we get the desired partial derivative:

∂E(n)

∂yj(n)
= −∑

k
ek(n)ϕ′k

(
vk(n)

)
wkj(n) (6.43)

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 51

= −∑
k

δk(n)wkj(n) (6.44)

Finally, plugging Equation 6.44 into 6.34, we get the local gradient δj(n) for a hidden neuron j
(Haykin, 1994):

δj(n) = ϕ′j
(
vj(n)

)
∑
k

δk(n)wkj(n). (6.45)

6.13 The Two Passes

The feed-forward and back-propagation phases do not happen simultaneously. Training occurs in
two stages. For the forward pass, a training pattern is presented to the input layer, all the
activations of the neurons are calculated, and the final error at the output layer is calculated. In the
back-propagation phase the errors are used to determine the adjustments to the weights in the
network, and the weights are changed. Back-propagation has a variety of parameters that can be
tweaked for different scenarios. In the following sections, a brief explanation is given on
fine-tuning backprop and its cousins.

6.14 Nonlinear Activation Function

The ability of a backpropagation network to be trained to emulate a nonlinear function relies on
the activation function of the neurons being nonlinear and differentiable. Linear functions would
be pointless — the network would simply become a sequence of matrix multiplications (which
could be boiled down to a single matrix). Differentiablity is required for the backpropagation
algorithm to succeed, which rules out the old-fashioned perceptron functions such as the unit step
or the clipped ramp.

The most popular activation function is the logistic function, y = ϕ(x) = 1/(1 + exp(−x)) (see
Figure 6.6). This function also happens to have a numerically efficient calculation for the
derivative:

ϕ′(x) =
exp(−x)

[
1 + exp(−x)

]2 = ϕ(x)
[
1− ϕ(x)

]
. (6.46)

This would have helped increase the logistic function’s popularity in the early days of
backpropagation research, when CPU cycles were much harder to come by.

The hyperbolic tangent (Figure 6.5) is another popular activation function:

ϕ(x) = a tanh(bv) =
2a

1 + exp(−bx)
− a (6.47)

As you can see, tanh is a scaled and shifted version of the logistic function. An ANN may learn
faster when using tanh, because odd functions, such that f (−x) = − f (x), can generate both

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 52

positive and negative values, unlike the logistic function, which gives only positive values.
Although, a logistic neuron can be made odd merely by setting its bias input to − 1

2 , and the bias
weight to 1.

Theoretically, any nonlinear differentiable function could be used. A parabola, such that
ϕ(x) = x2 could be used in a backpropagation network. So could the exponential ϕ(x) = ex.
However, these would not be stable in a neural network, as they could generate numerically
enormous output values which would change by large amounts even if the preceding weights
were adjusted by a very small amount. Sigmoid functions prevent this instability because they
have a “squishing” characteristic. The point of greatest variability is were the derivative reached
its maximum, at x = 0. As the input value increases or decreases to infinity the output converges
to an asympotic maximum or minimum. According to Rumelhart et al.(1986a), this feature
contributes to the stability of the algorithm.

6.15 The Learning Rate

Traversal of the error surface in backpropagation is implemented numerically. The parameter
∆wij(n) provides an estimate of the gradient, which is multiplied by the learning rate parameter η,
to give a discrete step with which to modify the weight wij. Decreasing this step size by reducing
η seems to be an obvious way to improve the smoothness and accuracy of the gradient descent.
However, one tradeoff is that training will take longer with smaller η. This slowdown might be
acceptable in some applications, but for others, timely training might be needed.

Increasing η will decrease the training time of the network, but if it is increased too much, the
weights will become unstable and never converge to a good solution. If you imagine that the
weights are attempting to reach a global minimum on the error surface, but the steps are too big,
the minimum will never be reached. The weight vector will overshoot it repeatedly. This is known
as oscillatory behavior (Haykin, 1994).

The learning rate could also be scheduled to change during the learning process. This would
allow a larger learning rate at the onset of training, which would speed the traversal of the weight
vector over the error surface. Then the learning rate could be reduced to prevent the weight vector
from overshooting the minimum on the error surface. The learning rate could be scheduled in any
manner. Distinct values could be used at different times, or the rate could be tied to a linear or
exponential curve. The point is to decrease the learning rate near the end of training to decrease
oscillations around whatever minima has been found by that time (Haykin, 1994).

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 53

6.16 Pattern and Batch Mode

In the pattern mode of training, the weights of the network are updated each time a pattern is
presented. Processing all patterns in the training set is called an epoch. Usually, a network is
trained over multiple epochs until a stopping criteria is reached. In pattern mode, it is desirable to
randomize the order of patterns between epochs to avoid the possibility of cycles in the evolution
of the weight vectors.

In batch mode training, the weights are left untouched during an epoch, then updated all at once
between epochs. The weight deltas are determined by descending the gradient of the Eav average
error surface (as opposed to the instantaneous error E(n) for pattern mode training).

The weight adjustment for batch mode is

∆wji = − η

N
N
∑
n=1

ej(n)
∂ej(n)

∂wji
(6.48)

where N is the number of training patterns.

Each mode has its advantages and disadvantages. Pattern mode needs less storage for weight
values, is more stochastic and less prone to settling on a local minimum. Batch mode provides a
better estimate of the error gradient. In general, the effectiveness of each depends on the problem
at hand (Hertz et al., 1991).

6.17 Stopping Criteria

In a theoretical sense, the back-propagation algorithm has not been shown to converge (Bishop,
1995). Nor does it converge numerically in practise. Because of the stochastic nature of training,
continued presentation of training patterns to a network will always result in changes to the
weights — waiting for the weights to stop changing would be an inadequate stopping criteria.
There are many types of stopping criteria; this section describes some common ones.

6.17.1 Gradient Convergence

One method, due to Kramer and Sangiovanni-Vincentelli (1989), is to stop when the Euclidean
norm of the gradient vector reaches a small enough threshold value. The thinking behind this is,
as the weight vector approaches the minimum on the error surface, it gets nearer to the “flat” part
of the minimum. At the minimum of the surface, the derivative, and therefore the gradient, ought
to be zero. This criteria may require long training times, and it needs additional computation of
the gradient vector.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 54

6.17.2 Accuracy Convergence

Another criteria is based on accuracy convergence. Training continues until the absolute change in
the average error, Eav, reaches a small enough value.

6.17.3 Error Target

A third criteria is to train until Eav reached a target error rate τ. This method might never halt if
the network is incapable of achieving Eav ≤ τ. On the other hand, if the network does reach
Eav ≤ τ, it could possibly be a suboptimal network that is capable of a much lower error rate if the
training were allowed to continue.

6.17.4 Hybrid Criteria

A hybrid criteria proposed by Kramer and Sangiovanni-Vincentelli (1989) combines Euclidean
norm of the gradient with the targeted Eav both mentioned above. With this method, the training
stops if either one of these criteria are met. This allows training to end even if one of the indicators
is “stuck.”

6.17.5 Peak Generalization

This criteria incorporates one of the most important properties of a pattern recognition machine —
the ability to generalize. After each training epoch, the network is tested with a cross-validation
(CV) data set. So long as the network is improving in its generalization capability, the error rate of
the CV data set will continue to decrease. Once overtraining starts to take place, ECVav will reach a
minimum and then start increasing, at which time the training will be halted (Bishop, 1995).

6.17.6 Constant Training Time

The simplest stopping criteria is to train the network for a fixed number of epochs, or for a certain
duration, then stop. Obviously, this method is guaranteed to halt. This criteria would be useful in
a real-time environment were network training is subject to strict time constraints. Overtraining
might be a problem with this method, but it can be alleviated by combining with the “peak
generalization” method above.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 55

6.17.7 Noise Issues

In practise, the parameters mentioned above do not change smoothly from epoch to epoch. There
is usually an element of noise thrown in, so that, say, the Eav value, will not appear to be smoothly
decreasing over time, but will be somewhat jagged. Usually, simple filtering is applied to the
parameter, such as requiring the criteria to be “true” for a certain number of sequential epochs.

6.18 Initialization

Ideally, we would like to start training a neural network with an initial set of weights that will
speed up and reduce the total training time. However, since the whole exercise of training is to
determine the weights, guessing them at the onset is unlikely. It might be possible to use prior
information to embed some preconceived notions into the weights, but that in itself is an unsolved
problem, plus you run the risk of initializing the network in a suboptimal way so that the global
error minimum is never reached.

For these reasons, neural networks are usually initialized with pseudo-random values (which in
itself is a pre-conceived notion.) These values are uniformly distributed within a small range. Care
must be taken here, because a poor initialization might lead to premature saturation (Lee et al.,
1991). This is a condition where too many neurons have an overly positive or negative sum of
inputs, and are giving outputs that are far into the “flat” regions of the sigmoid function where it
is approaching its asymptotic limits. Here, the derivative of the sigmoid curve is very low, and the
delta rule (which relies on the derivative to determine step size) will adjust the weight values by
an extremely small quantity. The symptom of this will be a time after the onset of training when
the error rate Eav changes exceedingly slowly. On the error surface, the weights are situated in a
nearly flat plateau area.

Lee et al.(1991) and Russo (1991) give advice in reducing the probability of premature saturation.
For this thesis, the neural weights were initialized with random values from −1/2 to +1/2, which
gave good results.

6.19 Variations on the Delta Rule

Bishop (1995) notes that the old delta rule for backpropagation is not the most effective means of
gradient descent. Many modifications have been proposed over the years. Most are ad hoc, but
some are theoretically well founded.

None of the alternative techniques was implemented in this thesis. The goal here was to compare
backpropagation to SVM and KDE, not to compare it to itself. Nevertheless, here are some
variations on the theme, briefly described.

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 56

6.19.1 Momentum

The simple method adds “inertia” to the trajectories on the error surface, which has the effect of
increasing the learning rate along directions where the gradient is smooth and monotonic. This
keeps the weight vector from getting bogged down in a long narrow trough on the error surface.
The old delta rule will cause the weight vector to bounce from side to side in the “ditch,” making
very slow progress along the overall gradient. A momentum term, µ, helps by increasing η along
the length of the ditch (Plaut, et al.1986).

6.19.2 Bold Driver

This dramatically named technique (Vogl et al.1988) continually adjusts the learning rate
depending on the error performance of the network. If the error has increased after a step, then it
is assumed that the step overshot a minimum. The step is then undone, the learning rate η is
reduced by a factor σ, and training is continued. If a learning iteration reduces the error, then the
learning rate η is increased by a factor ρ.

6.19.3 Quickprop

This technique, due to Fahlmann (1988), uses two sequential error evaluations and a gradient
evaluation to interpolate and model the error surface as a hyper-parabola. Then, the weight vector
is adjusted to coincide with the minimum of the parabola. Bishop (1995) notes that several fixes
are needed to get quickprop to work in practise. It is not too difficult to imagine an error surface
that would confound an algorithm that expects a parabolic shape.

6.19.4 Many η’s

The “long narrow trough” (a.k.a. “ditch”) mentioned earlier is such a common problem that much
work has been done to try to minimize the negative effects it has on gradient descent. Intuitively,
it might be a good idea to use a larger learning rate along the long shallow part of the valley, and a
smaller rate along the steep narrow part, to reduce oscillations. Jacobs (1988) investigated some
schemes in which each weight value in the network was given its own learning rate. In effect, this
gives each dimension of the error surface a different η, and thus, things like long narrow valleys
might benefit, because the axes of the valley might be oriented orthogonally. Jacobs redefined the
delta rule to handle multiple η’s, and also developed the delta-delta and delta-bar-delta methods,
which are attempts to incorporate heuristics into gradient descent and reduce oscillations in the
error surface. The delta-delta method does not work very well in practise, and the delta-bar-delta
(which is the delta-delta rule with some tweaks) works better, but has four parameters that the

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS 57

user has to supply. The method also assumes that the weights are independent, when in practise
some of them are strongly coupled.

6.19.5 Summary of Delta Rule Alternatives

The delta rule is still the simplest of the gradient descent algorithms, and works well for many
situations. The alternative rules are useful when confonted with a problem that converges
exceedingly slowly with the delta rule.

From a practical perspective, if you are doing research on a problem, and you are not sure about
how to set the free parameters (such as η), you have to run trials with different parameter values
to see which works best. Say, for example that you want to try three values for the learning rate η:
low, medium and high. Then you have to run three trials. If you add a momentum term, and you
want to test three values for that, then you have 32 = 9 trials to run. If you are using the bold
driver technique, with four free parameters, and you wish to cover the parameter space with three
values for each parameter, then you will have to run 34 = 81 trials. The number of trials increases
exponentially with the number of parameters. The Curse of Dimensionality strikes in unexpected
places. (These examples ignore the fact that the user must choose the number of neurons in the
hidden layer, which creates yet another dimension on the parameter space.)

6.20 Neurons in the Hidden Layer

Changing the number of neurons in the hidden layer is a way to adjust the precision of the
network with respect to the training set. At one extreme, you could have a hidden layer of only a
single neuron, which would merely bisect the input space into two classes along a hyperplane
(with a smooth transition due to the sigmoid activation function) (Bishop, 1995). The other
extreme is a hidden layer that is so large that it actually emulates a look-up table of the training
set, with perfect accuracy (Haykin, 1994). Either extreme is useless for real applications, so the
number of hidden neurons must be determined by experimentation.

One strategy is to train a network with ever-increasing numbers of neurons, then testing the
performance on a cross-validation (CV) set, an additional data set that was not used in training
(Bishop, 1995). The optimum is determined to be the maximum number of neurons that yields a
reduction in the CV error. When the CV error increases, this indicates that the network is behaving
like a lookup table of the training set and is not generalizing well to the CV set (Bishop, 1995).

Pragmatics must also be taken into account. Adding neurons to the hidden layer will increase the
computation time. This time increases as O(n) (Bishop, 1995). In other words, double the hidden
layer neurons and you double the training time. A complexity of O(n) is efficient, but increasing
the hidden layer still reduces the number of trials that an experimenter can run.

Chapter 7

Other Statistical Techniques

A variety of well-known statistical techniques are used for different parts of this project.

KDE, or kernel density estimation, is used as a classifier and compared to SVMs and ANNs.

The chi-square test is used as a post-processing step for comparing classification results to rows in a
confusion matrix.

The ROC, or receiver operating characteristic, is used to set the discrimination threshold that is used
to discard weakly classified results with the ANN and SVM.

The confusion matrix is used to describe multi-class performance, and, as mentioned above, is used
during post-processing.

In this chapter, each of these is described in more detail.

58

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 59

7.1 Kernel Density Estimation

Kernel density estimation, or KDE, is a simple method for estimating the probability density
function given a set of points sampled from an unknown distribution (Bishop, 1995).

KDE is an offshoot of the sliding histogram technique, in which a fine-grained estimate is found by
calculating a regular histogram repeatedly, but with the bin boundaries varying over the range of
a bin-width along an axis (Scott, 1992). It turns out that this is equivalent to convolving the data
with a cube-shaped kernel known as a Parzen window (Scott, 1992).

The Parzen window gives the number of points in a cube-shaped region, and may be defined as

H(u) =

{
1 |uj| < 1

2 , j = 1, ..., d
0 otherwise (7.1)

where d is the dimensionality of the data. This kernel corresponds to a hypercube of unit size
centered on the origin.

The total number of points falling inside the hypercube is

K =
N
∑
n=1

H
(x− xn

h

)
(7.2)

where x is the point where the estimate is desired, xn are the datapoints, N is the number of
points, and h is the “bandwidth” or smoothing parameter, which, for a cubical kernel, is the length
of each side.

The probability density can thus be estimated by

p̃(x) =
1
N

N
∑
n=1

1
hd H

(x− xn

h

)
(7.3)

which is the count, K, normalized so that p̃(x) ≤ 1.

Since the boundaries of the cubical kernel are discontinuous steps, the resulting estimate will also
be discontinuous. This can be eliminated by using a kernel with smooth boundaries, such as the
Gaussian kernel (Bishop, 1995)

p̃(x) =
1
N

N
∑
n=1

1
(2πh2)d/2 exp

{
−‖x− xn‖2

2h2

}
(7.4)

The width parameter, h, is a free variable that must be chosen by the user. If it is too large, then
detail will be lost. If it is too small, the estimate will be too rough with too much fine structure,
and will not generalize well. In the worst case, an estimate with an overly small width will behave
like a lookup table of the dataset.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 60

Even if a good width parameter is found, KDE has a fundamental “flaw.” Rosenblatt (1956) has
shown that, for a finite dataset, there is no non-negative estimator which is unbiased for all
continuous density functions.

Nevertheless, KDE is a well-investigated (if lacking in consensus) field of endeavour. In statistical
research, density estimation is a powerful methodology for gaining insight into data, for example,
revealing multimodal distributions (Jones et al., 1996).

The primary problem in KDE research is to automatically determine the bandwidth value. A
multitude of techniques exist and are discussed in depth in (Scott, 1992). To summarize, these can
be separated into two classes: first generation, and second generation (Jones et al., 1996).

The old “first generation”, or classical, methods are:

• Visual inspection;

• Rules of thumb;

• Least squares cross validation;

• Biased cross validation.

The more modern “second generation” methods are:

• ”Solve the equation” plug-in approach;

• Smoothed bootstrap.

Jones et al.(1996) advise that the plug-in bandwidth selector is the best. Loader (1999) “challenges
the claimed superiority of the plug-in methods on several fronts.” Bowman et al.(1998) conclude
that the simple reference bandwidth is quite effective.

Because of this lack of consensus in the literature and also the fact that most density estimation is
usually applied to low dimensional (i.e. one dimensional) datasets, it was decided to use the
simple reference rule, which minimizes the asymptotic mean integrated squared error (AMISE) for a
KDE. For a Gaussian kernal, the reference rule is

href = (4/3)1/5 σ N−1/5 ≈ 1.06 σ̃ N−1/5 (7.5)

Where σ and σ̃ are the population and sample standard deviations of the dataset.

Scant research has been done on KDE for high-dimensional data. Scott and Wand (1991) showed
that synthetic ten-dimensional data could be modeled reasonably well, and conclude that the
biggest problem with the curse of dimensionality was as much the lack of full rank as the
sparseness of data.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 61

7.2 Chi-Square Test

Given two sets of data, statisticians (and other people) often want to know: are the sets drawn
from the same distribution function, or from different distribution functions?

Data can be either continuous or binned. A dataset can be compared to a known distribution, or
two equally unknown datasets can be tested to see if they are both from the same distribution. In
this project a confusion vector is compared to rows in a confusion matrix, hence, the data is binned
and equally unknown.

The accepted test for comparing binned distributions is the chi-square test. For binned, equally
unknown distributions, the chi-square statistic is

χ2 = ∑
i

(√
S
R Ri −

√
R
S Si

)2

Ri + Si
(7.6)

where
R ≡∑

i
Ri and S ≡∑

i
Si (7.7)

and Ri and Si are the number of events in bin i for data sets R and S (Press et al., 1992). A larger
value of χ2 shows that it is unlikely that two distributions are drawn from the same population.
The χ2 statistic can further be used with the chi-square probability function to determine a
confidence level of the two distributions being equivalent. That was not done here, as the goal
was to simply find the “nearest” row in the confusion matrix.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 62

Figure 7.1: Some examples of ROC curves.

7.3 Receiver Operating Characteristics

The concept of the receiver operating characteristics (ROC) curve was developed in the 1940’s to
study systems for detecting airplanes in radar signals. In the 1960’s they were used in
psychophysics to assess subjective detection of weak signals (Egan, 1975). More recently, ROCs
have been used in pattern recognition systems for selection of optimal discrimination thresholds.

The ROC is a plot of the probability of false positives, P(FP), versus the probability of true positives,
P(TP), for a binary classifier as the discrimination threshold is varied.

Figure 7.1 shows some common ROC curves. The random predictor is a diagonal line emanating
from the origin at a 45◦ angle. It shows that, regardless of the threshold, an equal number of false
and true positive are accepted.

The perfect predictor appears as a horizontal line at P(TP) = 1. It shows that classification is
error-free for any threshold value.

A typical ROC appears as a curve that is situated somewhere between the random predictor and
perfect predictor curves. In practise, the curve sometimes appears a little lumpier. It shows that, as
the discrimination threshold is changed, the ratio of false to true positives changes. In the case of
neural networks, for example, the threshold would be the cut-off value applied to the output
neurons, below which any results are discarded. In Figure 7.1, the top-right point of the curve
shows classification with no thresholding applied, the bottom left, maximum thresholding. The
circle shows an “optimal” threshold that improves the ratio of true to false positives. The selection
of this point is not straightforward. In general, increasing the threshold (making it more
restrictive) improves the P(TP)/P(FP) ratio. The tradeoff is that more classifications are rejected

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 63

as being too weak.

In this work, a simple heuristic was developed for automatic selection of a good threshold value.

1. Choose a minimum P(TP) value that would give an acceptable “reject” rate. A value of
PTPmin = 0.25 = 25% was chosen, which gives a rejection rate of about 75% (not counting
false positives), which is still useful for the overall scheme used here.

2. Find the point on the ROC that is greater than PTPmin , such that P(TP) > PTPmin , which also
maximizes P(TP)/[P(FP) + 1]. This is almost like a simple ratio, but the +1 prevents the
denominator from being zero, as well as giving a higher value to higher P(TP)s, for equal
ratios of P(TP)/P(FP).

In short, the rule to find the optimal threshold point in the ROC is

maximize
(P(TP)

P(FP) + 1

) [
P(TP) > PTPmin

]
(7.8)

where the [· · ·] notation is an Iverson bracket that evaluates to 1 or 0 if its contents are true or false,
respectively.

Figures 7.2 and 7.3 show the ROC curves for a NN-100 classifier trained on all species, and the
same classifier with only the alder flycatcher.

The first figure (7.2) is an example of a classic ROC curve. It shows that, with a low discrimination
threshold of 0.2, the accuracy is 71%, and no data is rejected. As the threshold is increased, so does
the ratio of true positives to false positives. The optimal threshold is determined to be 0.85, at
which point the accuracy is 98%, but the rejection rate is 78%.

The ROC curve for the alder flycatcher (Figure 7.3) does not have the well-defined curvature of
the “all species” curve. It is somewhat closer to a straight line, which means that changing the
threshold will not have a significant effect on non-thresholded accuracy of 76%. Still, around the
optimal point of 0.65, the slope of the curve increases, giving an accuracy rate of 94% and a
rejection rate of 76%.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 64

Figure 7.2: The ROC curve for the NN-100 classifier. The values on the curve indicate the discrimi-
nation threshold. A threshold of 0.2 produced a 0% rejection rate.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 65

Figure 7.3: The ROC curve for the alder flycatcher with the NN-100 Classifier. The values on the
curve indicate the discrimination threshold. A threshold of 0.2 produced a 0% rejection rate.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 66

7.4 The Confusion Matrix

A confusion matrix (CM) is a well-known construction in the field of pattern recognition and
statistics in general. It is a form of contingency table. It provides a simple and intuitive indication of
the accuracy of a multi-category classifier (Kohavi et al., 1998).

Each row in a CM represents the actual category to which an input vector belongs. Each column
represents the category which the classifier deduced to be the proper category. The contents of each
cell may be counted quantities, but percentages can be used to give a clearer understanding of
accuracy without the need to do mental arithmetic. An additional “unclassified” column may be
present for classifiers that have the option of deciding that an input vector does not fall under any
of the categories provided. Perfect, error-free classification would give a CM with positive values
only along the diagonal, with all other cells at zero.

Example of a Confusion Matrix

Here is a simple example to illustrate some of the salient features of a CM. Given a hypothetical
system that is designed to distinguish between ducks and crows when given some feature vector,
the following CM might be generated after several runs:

DEDUCED CATEGORY
crow duck Unclassified

ACTUAL crow 80% 15% 5%
CATEGORY duck 30% 50% 20%

This confusion matrix quickly tells us that:

• When the classifier is given an input from the crow category, it produces the correct result
80% of the time, it thinks the vector belongs to the duck category 15% of the time, and 5% of
the time, the classifier has decided that the input fits into none of the categories and is
unclassified.

• When an input from the duck category is given, the system is correct 50% of the time, thinks
it was a crow 30% of the time, and was unable to classify the input 20% of the time.

Chapter 8

Pattern Recognition Implementation

In this section an overview is given of the various stages of the pattern recognition process. The
transformation from a raw audio signal to a species estimate has many steps, and two of those,
classification and postprocessing, each have a few variations. However, at a higher level, the
procedure can be explained in simpler terms:

• An audio signal is converted to digital form;

• The digital signal is broken into smaller frames;

• Each frame is processed to extract a variety of features;

• The feature vector for each frame is passed to a classifier to obtain a species estimate;

• The collection of frames for a call is postprocessed to determine a species estimate for the
entire call.

Figure 8.1 gives a general flowchart of how the audio signal was converted to a result.

8.1 Bird Species

Ten species were analyzed. As can probably be guessed by looking at the names in Table 8.1, they
were chosen by taking the first ten species from a CD-ROM in alphabetical order. The following
table shows the class ID used internally in the software, the BBL (Bird Banding Lab) four-letter
codes, and the species name. Photographs and spectrograms of each species may be found in
Appendix A.

67

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 68

Figure 8.1: Flowchart of the overall recognition process. Blocks represent algorithms, and words in
italic represent data passed to and from algorithms.

Class ID BBL Code Species Name
0 ALFL Alder Flycatcher
1 AMCR American Crow
2 AMGO American Goldfinch
3 AMRE American Redstart
4 AMRO American Robin
5 BAOR Baltimore Oriole
6 BCCH Black-Capped Chickadee
7 BCTI Black-Crested Titmouse
8 BDOW Barred Owl
9 BLJA Blue Jay

Table 8.1: Bird species used for recognition.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 69

8.2 Preprocessing

The preprocessing stages were explained in detail in Section 3. In short, the following steps were
taken:

• The audio recording was digitized at 44.1 kHz;

• The digitized signal was segmented into frames of 512 samples;

• The frames were transformed into the frequency and quefrency (cepstral) domains;

• Twenty features were extracted. Most were local to each frame, but two features involving
the relatively long-term (1.5 seconds) amplitude of multiple frames were also calculated.

Table 3.1 gives mathematical formulae for the features.

8.3 Data Sets

Three datasets were extracted from a body of 160712 frames of 512 audio samples each. The data
was divided into training and cross-validation parts.

The training superset (which will be referred to as the “superset”) is 110193 frames in size. This was
far too big for timely analysis with the various algorithms used in this project, so a much smaller
training set of 3887 frames was randomly sampled from the superset. The optimal ROC based
output thresholds are found with the training set. The confusion matrices, which are used later in
the chi-squared goodness of fit test, are determined with the superset. This is to give a larger
sample size for better confusion matrices.

The cross-validation (or CV) set is 50524 frames in size.

Data Set Frame Count Call Count Avg. Calls
per Species

Calls per
Species: Range

Training Superset 110193 404 40 23–67
Training Set 3887 403 40 23–67
Cross-validation Set 50524 193 19 10–32

Efforts were taken to ensure that each species represented had approximately the same number of
frames per data set. This would eliminate the need to handle differences in prior probabilities
between species. Frames were separated into training and CV data sets in a per-call instead of a
per-frame basis to prevent the possibility that different data sets might contain different frames
from the same call. Unfortunately, frames and calls are different things, and calls can differ wildly
in duration. Even though the frame count was consistent per species, the per-species call count

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 70

Figure 8.2: Structure of the datasets used in this project. The training set has one fewer call than
the training superset because the random sampling coincidentally discarded all the frames of one
of the calls.

varied from 23 to 67 in the training set. See Figure 8.2 for a graphical portrayal of the datasets used
in this project.

Of the 900 calls available, 304 were discarded for being inadequate in some respect. Section 2 lists
the various reasons for removing a call from the dataset. It is important to note that these calls
were not individually removed because they were found to be misclassified in preliminary
experimentation. Rather, all calls were listened to, and a simple checklist system was used to
decide if a call should stay or go. The purpose of this was to ensure that the classifiers would learn
a specific call of a bird (see Section 2.7) instead of recognizing extraneous sounds. For example,
some species, such as the American robin, are common in urban areas. In many robin recordings,
mechanical sounds such as traffic and lawn-mowers can be heard in the background. In effect,
there is a correlation between these sounds and the robin. If recordings with background sounds
were not removed, there was the possibility that a classifier might learn to recognize a species
based partially on extraneous (if associated) sounds, rather than the bird’s vocalization itself.

8.4 Pattern Recognition

Three pattern recognition systems were tested: artificial neural networks, support vector
machines, and kernel density estimation.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 71

Figure 8.3: Organization of the neural network used in this project.

8.4.1 Artificial Neural Network

The ANN software was hand coded in GNU C++ and ran on a Pentium 4, 2.4 GHz computer.

The backpropagation algorithm was based on the explanation provided by Haykin (1994). The
only embellishment added to the delta rule was a variable learning rate η during training. The
user could specify an initial and final ηs, and the code would decrease it exponentially as the
epochs progressed.

The network is composed of three layers, with an input layer, hidden layer and output layer. Logis-
tic neurons were used in the hidden layer, and linear neurons for the output layer (Figure 8.3). As
is recommended by ANN practitioners, the training set was randomly scrambled after each epoch
(Haykin, 1994; Masters, 1993). The number of hidden neurons, training epochs, and learning rates
varied. The following table encapsulates the various configurations of the neural network.

Hidden Neurons Training Epochs Start η Stop η CPU Time
20 100000 0.0001 1× 10−7 ≈ 1 hour
100 100000 0.0001 1× 10−7 ≈ 5 hours
500 50000 0.0001 3× 10−6 ≈ 13 hours

8.4.2 Support Vector Machines

For the SVM, the freely available LIBSVM library by Chang and Lin (2001) was used.

The LIBSVM training application svm-train has a multitude of options, with the following

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 72

combination being chosen:

• The SVM type is C-SVC, or C-support vector classification;

• The kernel is the radial basis function, exp
[
−γ|u− v|2

]
;

• Probability estimates, based on (Platt, 1999), were enabled to give smooth membership
values to permit output threshold determination with ROC curve;

• Internal cross-validation was set to four-fold;

• The termination threshold, ε, was left at the default of 0.0001.

The LIBSVM training algorithm is based on sequential minimal optimization (SMO).

SVM is a inherently a binary classifier. LIBSVM works around this by using what is called the
“one-against-one” approach. Here, k(k− 1)/2 classifiers are trained, one for each pair of classes.
During the prediction phase, each binary classifier “votes” for a class, and the winner is taken as
the result. Chang and Lin (2005) chose this approach because it trains more quickly.

Grid Search

For this SVM setup, there are two free parameters that must be tweaked for an optimal model: γ

for the kernel, which is analogous to 1/σ2 in a normal distribution, and the C, or cost parameter, a
“penalty” value for misclassified points. A typical way of finding the best combination is to run a
two-dimensional grid search to find the (C, γ) coordinate the gives the best CV accuracy.

After some initial experimentation with a subsampled training set, an 11× 11 grid was chosen,
using four-fold CV. SVM training at each cell of the grid was limited to 10 minutes, after which
time that training process was aborted, and the search continued. The entire process took 12 CPU
hours. Figure 8.4 shows the result of a grid search. The top plot shows accuracy with black cells
indicating that training was aborted for taking too long. The bottom plot shows the time required.
The region in the lower-right of each plot is where the SVM did not converge quickly enough and
timed out. Perhaps not coincidentally, the highest accuracy is observed to be along the
non-convergence zone. An optimal (C, γ) should maximize accuracy, but with better training
accuracy, you run the risk of overtraining. Using this reasoning, three (C, γ) pairs were chosen,
centered along the visible ridge of accuracy, one adjacent to the dead-zone, and two a little farther
away:

Distance to Dead-Zone C γ

Far 26 = 64 2−10 = 0.000977
Midrange 29 = 512 2−11 = 0.000488

Near 212 = 4096 2−12 = 0.000244

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 73

These points are indicated by N, M, and F in Figure 8.4. Further investigation of the
non-convergence zone showed that, even if the timeout was increased, svm-train still would not
converge.

In theory, SVM with slack variables should always have a solution, except where numerical
roundoff error prevents it. In iterative algorithms such as SMO, a termination threshold, ε, is
needed to determine when convergence has stopped. This value was set to 0.0001 for LIBSVM,
which may be too small for certain combinations of data and parameters (Lin, 2005).

Support Vectors

After training, the results were as follows.

Distance to
Dead-Zone C, γ Total SVs SVs per Class (Range) Average SVs per

Binary Classifier
Near 212, 2−12 2770 193–367 62.6

Midrange 29, 2−11 2860 195–379 63.6
Far 26, 2−10 3020 206–404 67.1

The Average SVs column shows the result of dividing Total SVs by the number of classifiers used in
the one-against-one method, which in this case is 45. The increase in the number of support vectors
might be due to the increase of γ, which would reduce the “width” of the radial basis functions in
the model, therefore allowing a more complicated separation between classes.

Prediction

Finally, the svm-predict application was used to classify the CV and test datasets using the model
created by svm-train.

8.4.3 Kernel Density Estimation

The KDE algorithm is, by far, the simplest algorithm of the three mentioned in this section. It can
be expressed as a single formula (Bishop, 1995):

p̃(x) =
1
N

N
∑
n=1

1
hd H

(x− xn

h

)
(8.1)

where p̃(x) is the model density, N is the number of points in the training set, h is a bandwidth
parameter, H is a kernel that acts on the difference between two points, xn are the training points,

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 74

Figure 8.4: Grid search accuracy (top) and duration (bottom). Black cells in (top) indicate that the
SVM model did not converge and timed out. The N, M and F show (C, γ) pairs that are near,
midrange, and far in relation to the non-convergence zone.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 75

and d is the dimension of each point. In this project, a multivariate normal kernel (RBF) is used for
H, which gives the formula:

p̃(x)C =
1

NC

NC
∑
n=1

1
(2πh2

C)
d/2 exp

{
−‖x− xn

C‖2

2h2
C

}
(8.2)

where the C subscript indicates data specific to a particular class. The implementation of this was
hand-coded with GNU C++.

8.4.4 Bandwidth Selection

KDE does not have a separate training phase like ANNs and SVMs. Rather, the entirety of the
training data is accessed for each estimate produced. A process that might be similar to training is
bandwidth selection, whereby a value of h is determined that gives the best results. Bowman et
al.(1998) show that a simple reference bandwidth is effective when compared to more elaborate
methods of bandwidth selection.

In KDE terminology, the reference rule is a value of h that will minimize the mean integrated squared
error (MISE) for a KDE, as N approaches infinity (Scott, 1992). For a Gaussian (normal) kernel the
reference rule is

href = (4/3)1/5 σ N−1/5 ≈ 1.06 σ̃ N−1/5 (8.3)

Where σ and σ̃ are the population and sample standard deviations of the data set, respectively.
The standard deviation of the training set was determined by calculating σ along each dimension,
then averaging them.

A covariance matrix was not used. For simplicity, a single σ value was used for all dimensions.
Other values of h, both above and below href, were experimented with, but the reference rule gave
the best results.

8.4.5 Recognition

To calculate the output vector for an input x, p̃(x)C is calculate for each of the ten classes. The
same postprocessing used with the ANN and SVM methods could then be applied. The outputs
of the KDE were lower than those of the ANN and SVM models, which are around the range of
0–1. They appeared to be exponentially distributed, from 0 to about 1× 10−16, and increased by
about one decade for every tenth percentile of the distribution. The values were recalibrated by
taking the log and then scaling and shifting to bring the p̃(x) values closer to a uniformly
distribution from 0–1. This worked fine for the training set, but the thresholds proved to be too
high for the CV set: the majority of the samples were rejected, because of KDE being a biased

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 76

estimator and inherently giving higher values to anything in the training set. In the end, the
thresholds were removed altogether for KDE.

These tiny values for p̃(x) are expected. Remember that the integral of a probability density
function will be only 1 (Gersho and Gray, 1992). Combined with the high dimensionality of the
space, the density at any point is expected to be low. For example, consider a uniform probability
distribution contained in a d-dimensional cube with sides of length h. The integral of the cube
with density ρ must equal to 1. For this simple cube-shaped distribution, 1 = ρhd, or, ρ = 1/hd. If
we consider the hypothetical scenario that the feature set for the bird data occupies a cube-shaped
space, a rough estimate of h = 10 with d = 20 gives ρ = 1× 10−20.

8.5 Postprocessing

Finally, when an audio frame has been processed, the output must be interpreted to determine the
species. A simple solution is to take the classifier output with the highest value and make that the
winner. However, there are two flaws with this.

The first is that the many of the frames are recordings of the silence between bird chirps. It would
be nonsensical to try to classify silence as a species. This can be remedied by setting a high
threshold on the output activations. Then, any frames that do not confidently belong to one
species will be rejected. The thresholds are selected to improve the ratio of true positives over false
positives as described in Section 7.3.

The second flaw is that we are actually trying to classify entire recordings, not just individual
frames. Thus, all the frames in the recording as a whole have to be combined, and a decision made
on the aggregate.

8.5.1 Simple Voting

One solution to this is to employ a voting algorithm. The maximum element in the output vector
(if any) increments a counter for the corresponding species. When all frames in the call are
finished, the species with the most votes wins.

8.5.2 Confusion Matching

As with the voting method, the output vector increments a counter for the corresponding species.
After the call has been processed, the vote tally forms what would be a single row from a
confusion matrix, or a confusion row.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 77

What can be done with this confusion row? Inspection of the data has shown that the confusion
rows for the same species often appear similar. Perhaps a confusion row can be compared to rows
in the training confusion matrix, and the closest one can be found, which would imply the species.
Since the elements of the confusion row represent probabilities of a multinomial distribution, a
chi-squared goodness-of-fit test can be used to determine if two rows are drawn from the same
distribution. For binned data, the chi-squared statistic is:

χ2 = ∑
i

(√
S
R Ri −

√
R
S Si

)2

Ri + Si
(8.4)

where
R ≡∑

i
Ri and S ≡∑

i
Si (8.5)

and Ri and Si are the number of events in bin i for data sets R and S (Press et al., 1992). Lower
values of χ2 indicate a better goodness-of-fit. The chi-squared statistic of a confusion row is
calculated against all rows of a confusion matrix, and the winner is the row that gives the lowest
value.

Figure 8.5 shows a detailed flowchart of the overall recognition procedure.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTATION 78

Figure 8.5: Detailed flowchart of the overall recognition process.

Chapter 9

Results

9.1 Introduction

In this chapter, the experimental results will be put forth and interpreted.

First, the numeric results of the trials will be presented with minimal interpretation.

Second, some high-level comments will be made reguarding accuracy rates, data sets, unclassified
data, and interpretation of results. Some issues that are unique to neural networks will also be
discussed.

Third, the results for both single-frame and entire-call data will be investigated in more depth.

Finally, a meta-analysis and comparison of the different classifiers will be attempted.

9.1.1 Numeric Results

Table 9.1 summarizes the results of single-frame recognition. Each row represents a classification
trial with a specific data set (as described in Section 8.3) and recognition system. The systems
NN-20, NN-100, and NN-500 indicate artificial neural networks with 20, 100, and 500 hidden
neurons. The SVM-FAR, SVM-MID, and SVM-NEA labels indicate support vector machines with
C (cost) and γ parameters that are far, midrange, and near in relation to a non-convergence region
of a grid search (Section 8.4.2). The KDE label indicates a kernel density estimation classifier, with
the bandwidth set according to a reference rule (Section 8.4.4).

The “accuracy” column shows the average recognition accuracy over all species for a trial.
“Rejections” shows the percentage of frames that were not classified because none of the classifier

79

CHAPTER 9. RESULTS 80

Data Set System Frame Accuracy (%) Rejections (%) Accuracy Floor (%)
Training NN-20 67 53 36
Superset NN-100 87 63 61

NN-500 85 62 34
SVM-FAR 82 64 47
SVM-MID 83 68 48
SVM-NEA 78 57 40
KDE 40 0 12

Training NN-20 66 46 35
Set NN-100 93 65 73

NN-500 98 58 91
SVM-FAR 89 61 58
SVM-MID 93 66 64
SVM-NEA 89 57 52
KDE 74 0 63

CV Set NN-20 64 54 29
NN-100 83 68 53
NN-500 79 67 28
SVM-FAR 76 65 36
SVM-MID 79 69 42
SVM-NEA 74 58 30
KDE 38 0 8

Table 9.1: Results for frame recognition. The best accuracy and accuracy floor values for a particular
data set and postprocessing method are shown in bold.

outputs met the discrimination thresholds that were derived from the ROC curve for each species
(Section 7.3). The “accuracy floor” column shows the lowest accuracy rate of the ten species for a
given trial. This metric was added as an indication of worst case performance. This was selected
as a performance measure, instead of median or maximum accuracy, because it is the type of
requirement that would be needed in an engineering specification.

Table 9.2 shows the frame accuracies for each of the ten species. The lowest value in each row is
the “accuracy floor” that is given in Table 9.1. Table 9.3 shows the rejection rates for all species in a
similar layout.

Table 9.4 summarizes the results of recognition for entire calls. It has one more column than the
“frames” table (9.1), that being “postprocessing,” which indicates whether the voting or the
chi-test postprocessor (Section 8.5) was used to convert the multiple species estimates for a call
into a single estimate.

Table 9.5 shows the call accuracies for each of the ten species. The lowest value in each row is the
“accuracy floor” for a given trial.

CHAPTER 9. RESULTS 81

Frame Accuracy (%) for Each Species
Data Set System ALFL AMCR AMGO AMRE AMRO BAOR BCCH BCTI BDOW BLJA

Training NN-20 85 95 64 62 57 39 36 36 75 60
Superset NN-100 87 99 81 92 80 72 61 86 96 78

NN-500 86 99 83 90 79 73 34 81 95 74
SVM-FAR 69 90 84 86 87 47 73 77 88 64
SVM-MID 84 98 89 90 77 61 48 82 89 71
SVM-NEA 77 97 70 81 83 40 45 71 88 58
KDE 43 12 53 62 43 27 48 61 46 31

Training NN-20 83 96 59 69 64 47 35 41 77 62
Set NN-100 96 99 86 98 92 88 73 94 100 90

NN-500 100 100 98 99 98 96 91 100 100 95
SVM-FAR 90 94 95 94 95 58 88 90 95 92
SVM-MID 99 99 98 98 92 78 64 97 96 95
SVM-NEA 96 99 95 94 97 52 61 95 98 87
KDE 65 64 81 82 82 63 73 87 71 71

CV Set NN-20 76 91 72 61 62 34 35 33 74 29
NN-100 66 98 83 89 78 61 62 88 94 53
NN-500 61 97 80 89 72 60 28 86 94 59
SVM-FAR 38 77 81 86 84 36 63 85 83 66
SVM-MID 54 95 87 89 73 47 42 89 86 73
SVM-NEA 49 95 67 78 85 30 42 75 85 42
KDE 35 8 51 60 33 23 48 63 49 26

Stats Minimum 35 8 51 60 33 23 28 33 46 26
Mean 73 86 79 83 77 54 55 77 85 65
Median 77 96 81 89 80 52 48 85 88 66
Maximum 100 100 98 99 98 96 91 100 100 95
Std. Dev. 20 27 14 13 17 20 18 20 15 21

Table 9.2: Frame recognition accuracy for each species. The species abbreviations are explained in
Table 8.1. The “Stats” section gives a variety of statistics for each column.

CHAPTER 9. RESULTS 82

Frame Rejections (%) for Each Species
Data Set System ALFL AMCR AMGO AMRE AMRO BAOR BCCH BCTI BDOW BLJA

Training NN-20 32 39 51 16 62 69 29 70 70 48
Superset NN-100 81 42 77 41 79 82 76 81 54 77

NN-500 73 49 71 42 78 77 84 82 48 78
SVM-FAR 77 56 70 44 61 69 54 77 71 69
SVM-MID 80 49 67 42 79 75 73 81 75 80
SVM-NEA 66 40 69 38 53 62 61 73 63 72
KDE 0 0 0 0 0 0 0 0 0 0

Training NN-20 29 40 52 15 58 67 29 68 66 46
Set NN-100 77 45 78 35 76 82 74 77 50 75

NN-500 61 49 58 29 71 74 81 73 40 71
SVM-FAR 73 60 71 41 42 69 29 74 72 64
SVM-MID 74 47 62 38 77 77 76 76 74 78
SVM-NEA 60 39 74 40 39 67 63 68 62 75
KDE 0 0 0 0 0 0 0 0 0 0

CV Set NN-20 37 42 50 20 68 58 22 69 70 54
NN-100 80 48 77 43 86 83 72 83 50 82
NN-500 74 55 71 45 85 77 83 84 45 81
SVM-FAR 79 64 70 45 68 63 55 71 66 56
SVM-MID 83 55 67 44 82 72 68 76 72 76
SVM-NEA 67 44 68 40 64 58 57 70 57 73
KDE 0 0 0 0 0 0 0 0 0 0

Stats Minimum 0 0 0 0 0 0 0 0 0 0
Mean 57 41 57 31 58 61 52 64 53 60
Median 73 45 68 40 68 69 61 73 62 72
Maximum 83 64 78 45 86 83 84 84 75 82
Std. Dev. 29 19 25 16 28 26 29 27 24 27

Table 9.3: Frame rejection rate for each species. The species abbreviations are explained in Table 8.1.
The “Stats” section gives a variety of statistics for each column.

CHAPTER 9. RESULTS 83

Data Set Postproc. System Call Accuracy (%) Rejections (%) Accuracy Floor (%)
Training Voting NN-20 76 0 0
Superset NN-100 89 0 48

NN-500 89 0 57
SVM-FAR 86 0 37
SVM-MID 88 0 44
SVM-NEA 85 0 23
KDE 62 0 0

Chi-Test NN-20 84 0 62
NN-100 89 0 70
NN-500 91 0 79
SVM-FAR 87 0 76
SVM-MID 88 0 70
SVM-NEA 89 0 63
KDE 85 0 70

Training Voting NN-20 64 8 0
Set NN-100 75 20 39

NN-500 82 16 48
SVM-FAR 79 12 47
SVM-MID 78 16 48
SVM-NEA 81 9 40
KDE 88 0 0

Chi-Test NN-20 71 0 44
NN-100 77 0 44
NN-500 84 0 48
SVM-FAR 83 0 60
SVM-MID 78 0 52
SVM-NEA 83 0 48
KDE 93 0 83

CV Set Voting NN-20 69 0 0
NN-100 82 2 27
NN-500 81 2 27
SVM-FAR 77 0 7
SVM-MID 81 0 40
SVM-NEA 79 0 13
KDE 59 0 0

Chi-Test NN-20 76 0 36
NN-100 82 0 46
NN-500 79 0 53
SVM-FAR 79 0 63
SVM-MID 81 0 56
SVM-NEA 78 0 56
KDE 72 0 36

Table 9.4: Results for call recognition. The best accuracy and accuracy floor values for a particular
data set and postprocessing method are shown in bold.

CHAPTER 9. RESULTS 84

Call Accuracy (%) for Each Species
Data Set Postproc. System ALFL AMCR AMGO AMRE AMRO BAOR BCCH BCTI BDOW BLJA

Training Voting NN-20 0 99 60 85 92 37 93 3 96 52
Superset NN-100 89 100 80 97 92 57 69 84 100 48

NN-500 80 100 90 96 96 67 69 74 100 57
SVM-FAR 37 97 70 96 94 67 90 68 96 57
SVM-MID 77 100 80 96 90 60 79 74 96 44
SVM-NEA 54 97 80 97 98 23 72 48 96 39
KDE 0 73 0 6 73 0 0 6 100 0

Chi-Test NN-20 74 97 73 96 79 83 62 74 96 70
NN-100 97 96 87 94 90 70 76 81 98 78
NN-500 86 97 90 96 92 80 79 84 100 96
SVM-FAR 86 88 83 97 85 80 76 81 96 87
SVM-MID 89 97 80 96 81 70 79 81 96 87
SVM-NEA 91 93 87 96 90 63 83 84 96 87
KDE 86 88 70 96 79 77 76 90 96 70

Training Voting NN-20 0 89 53 84 71 47 86 29 68 30
Set NN-100 100 88 67 96 58 60 45 65 86 39

NN-500 100 86 90 99 71 73 55 77 89 48
SVM-FAR 80 76 63 96 90 47 97 65 75 74
SVM-MID 97 88 80 97 60 60 48 77 75 78
SVM-NEA 91 91 80 93 92 40 45 68 84 65
KDE 0 80 0 63 83 67 0 71 96 0

Chi-Test NN-20 71 88 57 90 63 80 52 45 71 44
NN-100 91 97 67 94 58 63 52 65 86 44
NN-500 97 99 90 97 69 77 55 77 89 48
SVM-FAR 91 76 83 96 85 60 93 71 77 87
SVM-MID 97 86 77 97 56 63 52 81 75 78
SVM-NEA 97 91 97 93 85 53 48 84 84 74
KDE 83 99 100 97 85 100 86 90 89 91

CV Set Voting NN-20 0 94 59 80 90 19 90 8 100 9
NN-100 73 97 86 90 90 50 70 75 100 27
NN-500 40 94 86 83 87 50 50 58 100 27
SVM-FAR 7 88 68 87 87 38 80 67 100 36
SVM-MID 40 88 91 87 90 50 80 75 100 46
SVM-NEA 27 94 86 87 93 13 60 50 100 18
KDE 0 56 0 7 47 0 0 8 93 0

Chi-Test NN-20 53 91 64 87 80 63 80 67 100 36
NN-100 93 88 91 83 83 69 70 75 100 46
NN-500 53 91 86 80 80 75 60 75 100 64
SVM-FAR 87 75 77 90 80 63 70 67 93 73
SVM-MID 60 84 86 87 77 56 80 75 100 100
SVM-NEA 60 91 86 83 77 56 60 67 93 82
KDE 73 69 82 87 57 56 80 83 93 36

Stats Minimum 0 56 0 6 47 0 0 3 68 0
Mean 65 89 73 87 80 57 65 65 92 54
Median 79 91 80 93 84 60 70 74 96 50
Maximum 100 100 100 99 98 100 97 90 100 100
Std. Dev. 34 9 23 19 13 22 23 23 9 27

Table 9.5: Call recognition accuracy for each species. The species abbreviations are explained in
Table 8.1. The “Stats” section gives a variety of statistics for each column.

CHAPTER 9. RESULTS 85

9.1.2 Caveat on Interpreting Results

One must be cautious of making absolute statements about relative performance based on the
data presented here. Many of the results for different systems are quite close: less than 5
percentage points apart, in some cases. It is expected that if trials were re-run with slightly
different training and cross-validation sets, the trends would look similar, but the precise values
would be different. Also, in the cross-validation “calls” set, each species has, on average, only
193/10 ≈ 19 calls. Given this quantity, the misclassification of a single call can lead to an accuracy
variation of (100%)/19 ≈ 5%. For these reasons, one can only comment on obvious trends rather
than marginal differences.

9.1.3 Absence of a Test Set

Originally, a separate “test” set was created, but then was merged with the cross-validation (CV)
set to increase the CV set’s size. In general, in some training scenarios, a test set is desired. This is
because, if a researcher runs many trials and tweaks parameters in an effort to maximize the CV
accuracy, he is indirectly incorporating the CV set into the training set. One way to see if this has
happened is to process, when all the training and testing with the CV set is done, an additional
test set. If overtraining on the CV set has occurred, then the test set will perform more poorly than
the CV set.

In this project, very little fine-tuning was done. Some preliminary experimentation was needed to
get some ballpark estimates of various parameters, then a few trials were run. No effort was made
to optimize the CV results. Thus, CV overtraining is not expected to be an issue with this project.

9.1.4 Rejections and Accuracy

Initially, it was not clear how best to interpret unclassified frames. Eventually it was decided that
accuracy should be tallied after ignoring rejected frames or calls, because silent segments in the
audio recordings are expected to create unclassified frames. Also, any bird recording could have a
potentially unlimited duration of silence preceding or following its call, which may or may not be
removed by the person editing and digitizing it. Thus, it would be best to ignore rejects altogether.
This is why the “accuracy” and “rejections” columns in Tables 9.1 and 9.4 usually add up to more
than 100%.

9.1.5 Neural Network Training

One characteristic that distinguishes ANNs from SVMs and KDE is the transparency of the
training process. Back-propagation is an iterative procedure; during training, the accuracy and

CHAPTER 9. RESULTS 86

mean squared error may be easily inspected. This permits observation of the effect known as
overtraining.

Overtraining, a phenomenon in which a neural network acts like a lookup table for the training
data, was observed only in the NN-500 network (500 hidden units). Figure 9.1 shows the mean
squared error (the average of squared differences between the outputs and the targets) reaching a
minimum at about 5000 epochs, after which it slowly begins rising, finally leveling off at about
40000 epochs. This shows that generalization from the training set to the CV set is degrading. The
NN-20 (not plotted) and NN-100 networks show no overtraining — the MSE continues
decreasing, and finally levels off.

Figure 9.1: Mean squared error during training for both the training and cross-validation sets.

Oddly enough, overtraining was not seen when looking at the accuracy rate (Figure 9.2). An
output vector is considered “accurate” if the maximum element matches the target. Another
interpretation is that the maximum element is set to 1, and all other elements are set to 0. (Note:
accuracy during training is calculated before optimal thresholds are calculated as explained in
Section 7.3.) This would eliminate intermediate values that would contribute to the MSE.

The MSE evidence for overtraining agrees with the accuracy floor observations (Table 9.1;
Figure 9.5), which show that the NN-500 network has a stellar training set accuracy, but a poor CV
accuracy, when compared to the NN-100 results.

CHAPTER 9. RESULTS 87

Figure 9.2: Accuracy during training.

9.2 Single-Frame Accuracy

As observed in Figure 9.3, the best performers for single-frame accuracy are NN-100, NN-500,
SVM-FAR, -MID and -NEA. They gave a training set accuracy of 89–98%, and a CV accuracy of
74–83%.

The NN-500 system shows symptoms of overtraining. It has the best training set score, at 98%, but
both the superset and CV scores are lower than those of the simpler NN-100 system.

All three SVM results are within 5%, but the highest score is for SVM-MID, which used cost and γ

parameters that were halfway between high and low scoring points in the grid search (Figure 8.4).

The NN-20 results are unique in that they are almost the same for all three datasets, varying by
only 3 percentage points, from 64% to 67%. This appears to be, but is not an example of
generalization. Good generalization occurs when the bias and variance have reached an optimal
trade-off point. Here, variance is low, as indicated by the similar error rates for the different data
sets. However, the lower scores indicate that bias is high, and the network function is, on average,
different from the unknown classification function (Bishop, 1995). A high bias shows that a
classifier has too little flexibility and is unable to fit well with the actual classification function
(Bishop 1995). This corresponds to the fact that NN-20 has only 20 hidden neurons. Since each
hidden neuron acts as a simple binary classifier that divides the feature space in two, 20 neurons
classifying a 20-dimensional feature space would not be capable of distinguishing fine-grained
detail.

The KDE results really show it to be a biased estimator. The training set score of 74% is not bad, but

CHAPTER 9. RESULTS 88

Figure 9.3: Single frame accuracy.

the superset and CV scores of 40% and 38% hardly come close to the training score.

9.2.1 Frame Rejection

Figure 9.4 shows that there is a weak correlation of 0.51 between rejected frames and accuracy.
KDE was not included because it was necessary to set the rejection threshold to zero.

9.2.2 Frame Accuracy Floor

The accuracy floors (lowest species score) for all classifiers are laid out in Figure 9.5. It has a
similar structure to Frame Accuracy (Figure 9.3), but with greater variation, which is expected
since the minimum accuracy is an outlier value. The NN-500 and KDE systems are notable for the
range in scores. The NN-500 has a difference of 63 percentage points between the training and CV
sets, and the KDE has a difference of 55 percentage points. The CV floor for the KDE is actually
less than chance. As with the frame accuracy chart, these observations hint at overtraining.

9.3 Call Accuracy

When analyzing entire calls, an extra bit of processing has to be done to determine the species
based on a collection of frames. As mentioned earlier, either a simple vote count, or a chi-squared

CHAPTER 9. RESULTS 89

Figure 9.4: Single frame accuracy vs. rejection.

Figure 9.5: Single frame accuracy floor.

CHAPTER 9. RESULTS 90

goodness-of-fit test can be used to achieve this. In this section, analysis concentrates on comparing
performance between these two methods.

Figures 9.6 and 9.7 show recognition accuracy for both types of postprocessing. In general, the
training set performs more poorly than the larger superset from which it was extracted. This
might appear paradoxical, but it is expected, for the calls in the training set do not have enough
frames (only 10, on average) to give a statistically good estimate of a confusion row, which itself
has 10 columns.

Call Rejection

Frames have a higher rejection rate than calls. For a call to be unclassified, all frames composing it
also have to be unclassified. The rejection rate for frames will be approximately proportional to
the amount of silence or noise in the signal. Unless a call is completely filled with low-confidence
frames, it is unlikely to be rejected. Thus, rejection rates of calls are not plotted because they are
negligible. Superset and CV set rejection is, at most, 2%. Training set rejection is higher, up to 20%.
This is not surprising because the training set is a small subsampled fraction (about 4%) of the
superset. On average, each call in the training set is composed of 3887/403 ≈ 10 frames, so there
is a significant probability that they might all be rejected.

Calls being postprocessed with the chi-test will have zero rejects — every call is guaranteed to be
classified, because the nearest matching row in the confusion matrix is used.

For clarity, reference will be made to the score of only the CV dataset, as that is the one that is most
indicative of generalization ability.

9.3.1 Call Accuracy Comparison

Figures 9.6 and 9.7 show accuracy with both postprocessors. With voting, the best performer is
NN-100 with a score of 82%. With the chi-test, the best is also NN-100, with a score of 82%.

With voting, accuracy is fairly even, except for the NN-20 and KDE classifiers, which give results
similar to those of single frame accuracy (Figure 9.3). The calls have less variation and higher
accuracy than frames, which is probably due to the averaging effect of voting, and the fact that
there are more datapoints with which the classifier can make its decision.

Figure 9.7 shows accuracy with a chi-test postprocessor. The scores of all systems have become
more equalized. Even the two weaklings, NN-20 and KDE, now appear competitive with the best
NN and SVM classifiers. The chi-test seems to have improved accuracy. But, by how much?
Figure 9.8 shows the accuracy difference between the two postprocessors. For the best performers,
NN-200, NN-500, and all SVMs, the chi-test offers only a negligible improvement, and in some

CHAPTER 9. RESULTS 91

Figure 9.6: Call accuracy with a voting postprocessor.

Figure 9.7: Call accuracy with a chi-test postprocessor.

CHAPTER 9. RESULTS 92

Figure 9.8: The difference between call accuracy when using voting as opposed to chi-test.

cases, a minor reduction of up to 2 percentage points. It improves the CV scores of NN-20 and
KDE by 6 and 14 percentage points, a moderate improvement, but nothing spectacular.

For overall accuracy, the chi-test gives only a moderate improvement for weak classifiers.

9.3.2 Call Accuracy Floor

Figures 9.9 and 9.10 show the accuracy floor, which is the score of the single worst performing
species. The accuracy floor with a voting postprocessor is shown in Figure 9.9. The scores have
degraded significantly from the average accuracy (Figure 9.3). NN-20 and KDE show that one
species, ALFL, has a 0% accuracy rate for all three datasets (see also Table 9.5). SVM-FAR has a
score of 7% for ALFL — less than chance. Further inspection of Tables 9.5 and 9.3 shows that
ALFLs accuracy scores have a greater standard deviation that other species (Table 9.5), and it has a
slightly higher median rejection rate (Table 9.3), but ALFL does not appear to be a species that is
inherently difficult to classify.

The best scorers are NN-100 and NN-500 at 27% each, still less than half their respective accuracies
of 82% and 81%.

The chi-test postprocessor improves the accuracy floor scores, as shown in Figure 9.10. Here, the
low scores are for NN-20 and KDE, both at 36%. The best is SVM-FAR, at a respectable 63%. The
chi-test postprocessor clearly raises the accuracy floor. Figure 9.11 shows the difference between
chi-test and voting postprocessing. The chi-test improves the floor by at least 16 percentage points

CHAPTER 9. RESULTS 93

Figure 9.9: Call accuracy floors when using a voting postprocessor.

Figure 9.10: Call accuracy floors when using chi-test postprocessor.

CHAPTER 9. RESULTS 94

Figure 9.11: Difference in accuracy floor with voting as opposed to chi-test.

for SVM-MID, and up to 56 points for SVM-FAR. This chart has no negative values; on average,
the chi-test increases the floor by 33 points.

Accuracy Variance

You might have noticed that, although the accuracy floor has increased with the chi-test, the
average has changed very little (Figure 9.8). Does this say anything about how the maximum
accuracy value is affected by the chi-test? After all, if the minimum increases, but the average
remains the same, then that implies that the maximum value would have to come down to keep
the average at the same spot. Figure 9.12 shows that this is indeed the case. The chart shows the
standard deviation of the CV accuracy scores for each classifier. With voting, the σ value averages
29.6; with the chi-test, it is reduced by half, to 15.4. Thus, the chi-test postprocessor decreases the
variance of classifier accuracy, making performance more predictable.

9.4 Median Confusion Matrices

The confusion matrices in Figures 9.13 and 9.14 show the medians of the CV frame and call
accuracies across all classifiers. As such, it gives a meta-analysis of classifier performance. The
cells are grayscale coded, so that higher values are lighter in color, which makes problem areas
more obvious.

After perusing the CMs, some problem species pop out:

CHAPTER 9. RESULTS 95

Figure 9.12: Variance of accuracy, voting vs chi-test

Figure 9.13: Median confusion matrix of all classifiers when recognizing frames.

CHAPTER 9. RESULTS 96

Figure 9.14: Median confusion matrix of all classifiers when recognizing calls.

• The BCCH (black capped chickadee) is often mistaken for an ALFL (alder flycatcher).

• The BAOR (Baltimore oriole) is often mistaken for an AMRO (American robin).

• The BLJA (bluejay) is often mistaken for an AMRO (American robin).

Some of these errors can be explained by looking at the spectrograms and listening to the
recordings and observing that the calls are similar, such as with the BAOR and AMRO. With some
other errors, such as the BLJA being confused for an AMRO, it is not clear where the source of the
problem is. The calls do not seem all that similar. Maybe the frequency ranges are about the same,
and the overall phrasing is close, but it is still clear (to a person) that they are different.

Since this confusion is common across all recognition methods, it must show a deficiency with
something outside of the recognizers, in particular, with the preprocessing stage, which never
changes. Recall that, in a way, preprocessing “compresses” data and extracts a small set of
features, and necessarily discards data that is not deemed important. Recognizer errors will occur
if the ability to distinguish two species depends on some quality that was culled.

A solution to this would be to simply add more features, especially ones that are good at
distinguishing the BLJA from the AMRO. However, with adding features, you increase the
complexity of the problem, and come closer to colliding with the Curse of Dimensionality.
Another solution would be to train an auxiliary network that is been trained to only distinguish
robins and bluejays. This network would be called into action whenever one of these species is
encountered, to add an extra “opinion” to the system. Yet again, that adds complexity. Since this
thesis was intended to investigate, rather than solve, a problem, the BLJA and AMRO
inadequacies are left untouched, to serve as a datapoint to ponder.

CHAPTER 9. RESULTS 97

Figure 9.15: Figures of merit for classifiers.

9.5 A Final Figure of Merit

Given all these numbers, is there some way to combine a few of them to create an informative
figure of merit (FOM)? A good FOM would probably ignore the scores of the training set and
superset — the CV set is the one that everyone is interested in. It would have to include both the
accuracy and accuracy floor. Adding them together would not be very useful; you would get the
same value for (100,0) and (50,50). A good FOM should penalize very low accuracy or floor
values. Multiplying the two gives a better result. Thus, the figure of merit used here is the
geometric mean, or

FOM =
√

(CV Accuracy) · (CV Accuracy Floor) (9.1)

Figure 9.15 shows the CV FOMs of all classifiers for both voting and chi-test postprocessing. As
shown earlier, chi-test works better than voting. However, if you were forced to choose a classifier
that used voting, then SVM-MID is the best with a FOM of 57, and NN-100 is second with a score
of 47. With chi-test, the three SVM classifiers score better than the rest, with SVM-FAR having the
highest score at 70, which is the geometric mean of 79% for accuracy and 63% for the floor. This is
not the best accuracy of the lot (it comes third) but it is the highest floor.

In summary, NN-100, NN-500, and all three SVMs performed the best. NN-20 and KDE were
worse, yet far better than a random predictor, with average accuracies of seven times chance.

CHAPTER 9. RESULTS 98

9.6 Speed Issues

The previous portion of this chapter ignored the practical matter of classifier speed. In this section,
computational requirements are briefly analyzed.

9.6.1 Training and Classification Speed

Both the NN and SVM models required several hours of training to produce the best results. After
training, the classification time was longer with the SVM. The KDE model has no training phase
whatsoever, but, like the SVM, was also slow.

Using the parameters that gave the best results, an estimate can be made for classification times.
In the following table, A is the time required for an addition operation, M is the time for a
multiplication, and ϕ is the time for an exp(·). Experimentation showed that A, M and ϕ

relatively took times of 1, 1 and 10 approximately.

System Complexity Values at Best Accuracy Total
NN-100 (M + A)(nhid(ninp + nout)))+ nhid ϕ 2(100(20 + 10)) + 1000 7000

SVM-MID M(nSV(2 + ninp)) + A(2 ∗ nSV) + nSV ϕ 3000(22) + 6000 + 60000 132000
KDE ntrainϕ + Antrain + (M + A)(ntrain + ninp) 39000 + 3900 + 2(3900 + 20) 50740

The neural network classifier is faster than an SVM or KDE, by far. This is just a crude
approximation though. Optimizations, such as using a fast Gauss transform (Greengard and Strain,
1991) could speed up the KDE, as explained in (Elgammal et al., 2003), and possibly also the SVM.

9.6.2 Backpropagation Speed

The standard delta rule worked well for NNs. No embellishments were needed to speed up the
training. Perhaps speed tweaking of the delta rule is a relic of the early days of backpropagation,
because of the increasing power of computers. A quick calculation with Moore’s law∗ shows that
the computers of today (2005) are≈ 6000 times more powerful than the computers when
Rumelhart and McClelland released Parallel Distributed Processing in 1986. To put this in
perspective, a 1 CPU-hour trial today would have taken 8 CPU-months in 1986. Perhaps the days
of backpropagation tweaks are numbered, because increasing CPU speeds will make plain
backpropagation fast enough for most applications.

∗A common interpretation of Moore’s law is that CPU speeds double every 18 months.

Chapter 10

Conclusion

This thesis investigated the ability of pattern recognition techniques to make an automated
determination of bird species based on audio recordings of calls. Inspiration was drawn from
earlier research on musical instrument recognition.

In this project, short-term tonal characteristics alone were used as features, as opposed to global
qualities that have been commonly used in earlier research.

Each bird call was separated into frames of 512 samples. Well-known spectral and cepstral pitch
characteristics, as well as the short term amplitude envelope, were extracted and used as features.
These features were chosen in part because of their resistance to noise. Spectral and cepstral
analysis together allowed pitch determination of signals ranging from pure sinusoids to those rich
in harmonics. Global characteristics, such as the duration, structure, and order of sounds, were
ignored.

Three pattern classification techniques were evaluated: artificial neural networks (ANN) with
backpropagation; the more recently invented support vector machines (SVM); and kernel density
estimation (KDE), an old statistical technique.

Each of these recognizers were trained to convert a single frame into a species estimate. A high
discrimination threshold was selected by automatic inspection of the receiver operating
characteristic (ROC) curve which allowed the ANN and SVM to reject low-confidence frames.
Since an entire bird call is composed of dozens of frames, two postprocessing methods were used
to condense a groups of estimates into a single estimate for the complete call.

The first method was simple voting. Each frame, when processed, gave a “most likely” species.
When all frames of a call had been processed, the species with the most votes was selected as the
winner.

99

CHAPTER 10. CONCLUSION 100

The second method relied on the chi-squared goodness-of-fit test. After the species votes were
tallied for all frames in a call, what remained was a multinomial distribution (or “confusion row”)
that could be matched to a row in the confusion matrix of the training set. The row that gave the
lowest χ2 value was the winner.

Both methods gave similar average accuracy scores, with the chi-test giving moderate
improvements for the weaker classifiers.

The beneficial effects of the chi-test was seen when examining the accuracy floor, which is the
accuracy of the worst-performing species for a classifier. The accuracy floor is an indication of
worst-case performance expectations. The chi-test raised the floor for all classifiers. For the
weaker classifiers, the increase was significant. The chi-test also reduced the variance of
per-species accuracy, making performance more predictable.

To evaluate overall performance, the geometric mean of average accuracy and accuracy floor was
used as a figure of merit. Based on this figure, the best classifiers were the support vector
machines (with SVM-FAR having a CV accuracy of 79% and a floor of 63%) followed by the neural
networks and kernel density estimation.

In summary, the three most interesting results of this thesis are:

• Short-term tonal qualities, which ignore global characteristics of a call, are adequate for
species recognition;

• Multiple species estimates from a call can be combined using a voting algorithm or
goodness-of-fit test to give a good accuracy score;

• The chi-square goodness-of-fit test can be used to improve the accuracy of weak classifiers,
and also reduces the variance of accuracy across classifiers.

10.1 Future Directions

During the development of this project, there were many occasions when variations could have
been applied to the techniques being evaluated. Unfortunately, due to time constraints, these
could not be investigated here — those journeys will have to wait for future research projects.
Following is a description of some of the potential areas of investigation.

10.1.1 More Species

Currently, this project investigates the classification of only ten species. What would happen if this
were increased to fifty (a number which was the original goal) or more? How will the current

CHAPTER 10. CONCLUSION 101

classifiers degrade with additional species? If they are made more powerful by adding neurons or
support vectors, how will performance change? What will happen if hundreds of species are
trained for? Will recognition be tenable, or will a hierarchical system be needed that does a crude
classification first, then one or more additional classifications to fine-tune the recognition?

10.1.2 Different Features

There is always an urge to use a large number of features for the classifiers, but restraint was
deliberately exercised here in an attempt to keep dimensionality under control. One particular
feature which came to light after the fact was a frequency modulation parameter. This would be
an analysis of the short-term pitch by taking the peak frequency and determining its periodicity.
This might be a useful feature for birds that emitted warbling sounds.

One of the goals of this work was to use only local or instantaneous features. An obvious question
is then, how would performance improve if global characteristics, such as syllable durations,
inter-syllable spacings, and total call duration, were used?

Finally, are any of the current features redundant or useless for recognition? Maybe pruning
algorithms can be used to determine which features are salient.

10.1.3 Preprocessing Robustness

Good features are of utmost importance. ANNs and SVMs may be powerful, but they are not
telepathic; if given a feature that is no different from a random variable due to noise, there are
limits to what can be deduced from it.

Features were chosen based on many criteria, but one aspect was robustness against noise. Do
there exist other types of local or global features that are as robust (if not more) than the ones used
here?

10.1.4 Musical Instruments and Beyond

The features used in this project were inspired by research into recognition of musical instruments.
How would the system developed here fare against other classifiers for musical instruments?

How would this system perform when recognizing other sounds altogether, such as non-bird
animals, insects, etc., or mechanical sounds?

CHAPTER 10. CONCLUSION 102

10.1.5 Continuous Processing

The current system classifies birds on a per-file basis. Could it be modified to operate continually,
as would be required in a real-world monitoring situation? Perhaps a several-second “sliding
window” would work.

10.1.6 More KDE

Although KDE was shown to be a poor performer, the sheer simplicity of the method is, in itself,
appealing. Investigating the various bandwidth selection techniques could be an interesting
project unto itself.

Appendix A

Species Description

Ten species of North American birds were used in this thesis. All these species can be found in
Manitoba, with the exception of the black-crested titmouse, which is limited to Texas. This section
shows pictures of the birds, along with a spectrogram to give an impression of how they might
sound. Audio files of most of these calls can be found on the internet, at
http://www.antiquark.com/birds. The images in this section were obtained from Wikipedia:
The Free Encyclopedia, at http://www.wikipedia.org.

Figure A.1: Alder Flycatcher (ALFL) Picture and Spectrogram

103

APPENDIX A. SPECIES DESCRIPTION 104

Figure A.2: American Crow (AMCR) Picture and Spectrogram

Figure A.3: American Goldfinch (AMGO) Picture and Spectrogram

Figure A.4: American Redstart (AMRE) Picture and Spectrogram

APPENDIX A. SPECIES DESCRIPTION 105

Figure A.5: American Robin (AMRO) Picture and Spectrogram

Figure A.6: Baltimore Oriole (BAOR) Picture and Spectrogram

Figure A.7: Black-Capped Chickadee (BCCH) Picture and Spectrogram

APPENDIX A. SPECIES DESCRIPTION 106

Figure A.8: Black-Crested Titmouse (BCTI) Picture and Spectrogram

Figure A.9: Barred Owl (BDOW) Picture and Spectrogram

Figure A.10: Blue Jay (BLJA) Picture and Spectrogram

Appendix B

Choosing Features

The background work for this thesis, involved experimentation with many preprocessing methods
to try to determine which ones were best suited for use in a pattern recognition context. Most of
the experiments failed, but in the process several rules of thumb were built up, to help qualify and
choose features. Here, for the reader’s interest, is a list of these rules, in no particular order.

B.1 Use Well-Known Pre-Processing Methods

You should use tried-and-true techniques for preprocessing. It might be possible to invent a novel
and innovative feature, but if you do so, then it is necessary to analyze this new technique, prove
that it works, then implement it and show that the implementation works. Transferring your
creativity and inventiveness to the problem that comes after the pre-processing stage will simplify
the overall task (Chen, 1973).

B.2 Noise Rejection

A feature should be immune (or at least resistant) to variations in background noise or other
extraneous forms of interference (Devijver and Kittler, 1982).

B.3 Features Should be Reversible

Given a set of features, you should be able to reconstruct (to some extent) the original signal
(Devijver and Kittler, 1982). This shows that the features you have chosen retain much of the key

107

APPENDIX B. CHOOSING FEATURES 108

information of the original, just in a different format. A perfect example of this is the Fourier
transform, which can be inverted to produce the original signal.

B.4 Dimensionality Reduction

You should make efforts to reduce the number of dimensions of the input signal. This will help
the subsequent processing stages avoid the Curse of Dimensionality (Bishop, 1995). Some
literature indicates that about 10–20 dimensions is the maximum useful dimensionality for a
feature space (Scott, 1992). An obvious solution would be to simply use fewer features. Another
workaround is to project a number of features onto a lower-dimensional space, a technique that
has its share of problems (Scott, 1992).

B.5 Invariance to Amplitude Changes

A feature should be invariant to changes in amplitude Both weak and strong signals of the same
category should produce the same value for a given feature (Winston, 1984). (Although, in the
case of this thesis, the signals were largely normalized for amplitude because of auto-gain circuitry
in the recording devices, and manual gain control by the people operating the equipment.)

B.6 Input/Output Space Smoothness and Continuity

A transformation that converts a point in the input space to a feature should be smooth and
continuous. Similar points in the input space should produce features with similar values
(Devijver and Kittler, 1982). To further illustrate, here is an example.

Assume that your input space is a series of samples from an audio signal. If you were to apply the
Fourier transform as a means to find the peak frequency component, you might get a result as
shown in Figure B.1. Here, similar input frequencies will produce similar value for the extracted
peak frequency.

Consider the case where you now have a more complicated signal with multiple peaks in the
frequency domain, as shown in Figure B.2.

If the three peaks in the frequency domain are close in magnitude, then a simple peak detection
algorithm could produce one of several results, depending on small variations in the original
signal caused by noise. For example, if the peaks were 100 Hz apart, then the detected frequency
could be either 100, 200 or 300 Hz.

APPENDIX B. CHOOSING FEATURES 109

Figure B.1: Simple spectral feature extractor.

Figure B.2: Simple spectral feature extractor with ambiguous result.

The solution to this particular problem is to add another transform and find the cepstrum of the
signal (Section 3.3). The cepstrum will convert a comb-like structure in the frequency domain into
a single peak (Figure B.3).

Figure B.3: Simple cepstral feature extractor.

This peak value, 100 Hz, is much more resistant to noise. The magnitude of the peaks after the
initial Fourier transform can vary, but the cepstral estimate of the spacing between the peaks will
remain stable.

B.7 Avoid Binning or Thresholds

This is related to the previous item on smoothness and continuity (Devijver and Kittler, 1982). It
might appear to be simplifying things if data is broken down into bins before being passed to a

APPENDIX B. CHOOSING FEATURES 110

classifier. For example, a signal level could be separated into “weak” and “strong” bins before
processing. Information is lost if this is done. A “strong” signal that is almost straddling the
boundary will be in the same bin as the strongest signal in the dataset. It is better to simply pass
the signal level to the classifier.

B.8 Ease of Implementation

A feature extractor is worthless if you cannot get it to operate properly. If you plan to code an
algorithm from scratch, it is a good idea to choose one that can be implemented and tested in a
timely manner, and with some confidence that it actually works (Chen, 1973).

B.9 Avoid Conceptual Cross-Contamination

If you plan to compare the performance of, say, neural networks to SVMs, then the preprocessor
should contain neither NNs nor SVMs. If it does, then it is more difficult to isolate performance
differences. This rule-of-thumb came to mind when investigating pitch detection methods for the
preprocessing stage, and it was discovered that neural networks have been used for that purpose.

B.10 Confirm Assumptions with Experiment

It is possible to propose features which, at first glance, and even after a longer, harder look, appear
ideal for extracting useful information. Only through subsequent testing on real data do the
limitations of the proposed method become apparent. One example of such a case is using the
standard deviation of the frequency spectrum. The standard deviation (or σ) should provide an
indication of the overall “shape” of the spectrum. A spectrum with a sharp, well-defined peak
would have a small σ, but a spectrum with a spread-out peak, or with multiple harmonics, would
give a larger σ. Intuitively, this appears to be a useful measure.

In reality however, the σ of the spectrum is useless for describing the shape of the peak. In a
laboratory environment, σ would indeed be useful, but in real-life signals with background noise,
σ turns out to be little better than a random variable.

In an outdoor environment, the background noise typically has more energy at lower frequencies,
and is similar to pink or green noise which has a 1/ f distribution. Figure B.4 shows the type of
spectrum that might be found in a real signal.

As can be seen by inspecting the resulting spectrum of Figure B.4, the σ value will vary depending
on:

APPENDIX B. CHOOSING FEATURES 111

Figure B.4: Effect of ambient noise on signal.

• The frequency of fo;

• The amplitude of fo;

• The amplitude of the background noise;

• The harmonics of fo.

To belabour this point: one should not assume that a feature is useful; one should show that a
feature is useful.

B.11 Confidence Metric

Every good feature should have an extra value that gives an indication of how “reliable” it is. For
example, if you have a frequency estimate of some signal, you would like to know if it is the result
of a strong component, or merely a random blip of noise. The magnitude of the component is a
good confidence metric, but that would fail if the signal is composed only of loud noise. A better
metric, one that is used in this thesis, is to normalize the peak energy by dividing it by the energy
of the frame. This indicates the magnitude of the peak relative to the rest of the signal, and will
produce a lower value if noise is present.

APPENDIX B. CHOOSING FEATURES 112

B.12 Automated Feature Selection

There are many methods for automatically selecting a subset of features from a large features set.
An exhaustive search is impossible, as it increases as d! where d is the size of the feature set.
Heuristics have to be used instead. These methods were not utilized, as they require the
classifier(s) to be retrained dozens of times, which, for this project, would have taken months of
CPU time. A good comparison of feature selection algorithms is by Jain and Zongker (1997).

Bibliography

Agostini, G., Longari, M., and Pollastri, E. (2001a). Content-based classification of musical
instrument timbres. In Proc. of Content-Based Multimedia Indexing, IEEE Multimedia Processing
TC, pp. 159–166. Università degli Studi di Brescia, Brescia, Italy.

Agostini, G., Longari, M., and Pollastri, E. (2001b). Musical instrument timbres classification with
spectral features. In IEEE Fourth Workshop on Multimedia Signal Processing, pp. 97–102. Cannes,
France.

Agresti, A. (1996). An Introduction to Categorical Data Analysis. Toronto: Wiley.
Aizerman, A., Braverman, E. M., and Rozoner, L. I. (1964). Theoretical foundations of the

potential function method in pattern recognition learning. Automation and Remote Control 25,
821–837.

Berger, R. (2005). Personal communication.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon Press.
Boll, S. F. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.

on Acoustics, Speech and Signal Processing 27, 113–120.
Bowman, A., Hall, P., and Prvan, T. (1998). Bandwidth selection for the smoothing of distribution

functions. Biometrika 85 (4), 799–808.
Bruder, J. A., Cavo, V. N., and Wicks, M. C. (1998). Bird hazard detection with airport surveillance

radar. In 8th Annual Meeting, Bird Strike Committee, pp. 160–163. Cleveland, Ohio: Internet
Center for Wildlife Damage Management.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery 2, 121–167.

Campbell, C. (2002). Kernel methods: a survey of current techniques. Neurocomputing 48, 63–84.
Chang, C.-C. and Lin, C.-J. (2005). LIBSVM: a library for support vector machines. Software available

at http://www.csie.ntu.edu.tw/~cjlin/libsvm as of Jan. 2006.
Chen, C.-H. (1973). Statistical Pattern Recognition. Rochelle Park, New Jersey: Hayden Book

Company, Inc.
Chiu, S.-T. (1996). A comparative review of bandwidth-selection for kernel density estimation.

Statistica Sinica 6, 129–145.
Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and other

kernel based learning methods. Cambridge: Cambridge University Press.

113

BIBLIOGRAPHY 114

Cucker, F. and Smale, S. (2001). On the mathematical foundations of learning. Bulletin (New Series)
of the American Mathematical Society 39 (1), 1–49.

de Cheveigné, A. and Kawahara, H. (2001). Comparative evaluation of F0 estimation algorithms.
In Eurospeech 2001 - Scandinavia.

Dennis, J. V. (1964). Woodpecker damage to utility poles: With special reference to the role of
territory and resonance. Bird-Banding: A Journal of Ornithological Investigation 35 (4), 225–253.

Derégnaucort, S., Guyomarc’h, J.-C., and Richard, V. (2001). Classification of hybrid crows in
quail using artificial neural networks. Behavioral Processes 56, 103–112.

Devijver, P. A. and Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Englewood Cliffs,
New Jersey: Prentice/Hall International.

Devore, J. L. (1987). Probability and Statistics for Engineering and the Sciences. Monterey, California:
Brookes/Cole.

Dubnow, J. J., Schafer, R. W., and Rabiner, L. R. (1976). Real-time digital hardware pitch detector.
IEEE Trans. on Acoustics, Speech and Signal Processing 24 (1), 2–8.

Egan, J. P. (1975). Signal Detection Theory and ROC Analysis. New York: Academic Press.
Elgammal, A., Duraiswami, R., and Davis, L. S. (2003). Efficient kernel density estimation using

the fast gauss transform with applications to color modeling and tracking. IEEE Trans. on
Pattern Analysis and Machine Intelligence 25 (11), 1499–1504.

Eronen, A. (2001). Comparison of features for musical instrument recognition. In 2001 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 19–22. New Paltz, New
York.

Evans, W. R. (1998). Applications of acoustic bird monitoring for the wind power industry. In
National Avian - Wind Power Planning Meeting III, pp. 141–152. San Diego, California: National
Wind Coordinating Committee.

Evans, W. R. (2005). Monitoring avian night flight calls—the new century ahead. The Passenger
Pigeon 67 (1), 15–24.

Everitt, B. S. (1992). The Analysis of Contingency Tables. New York: Chapman and Hall.
Fahlman, S. E. and Lebiere, C. (1990). The cascade-correlation learning architecture. In Touretzky,

D. S. (Ed.) , Advances in Neural Information Processing Systems 2, pp. 524–532. San Mateo, CA:
Morgan Kaufman.

Farnsworth, A. (2005). Flight calls and their value for future ornithological studies and
conservation research. The Auk 122 (3), 733–746.

Farnsworth, A., Gauthreaux, S. A., and van Blaricom, D. (2004). A comparison of nocturnal call
counts of migrating birds and reflectivity measurements on doppler radar. Journal of Avian
Biology 35, 365–369.

Gersho, A. and Gray, R. M. (1992). Vector Quantization and Signal Compression. Boston: Kluwer.
Greengard, L. and Strain, J. (1991). The fast gauss transform. SIAM J Sci Stat Comput 12 (1), 79–94.
Greenwood, P. E. and Nikulin, M. S. (1996). A Guide to Chi-Squared Testing. Toronto: Wiley.
Härmä, A. and Somervuo, P. (2004). Classification of the harmonic structure in bird vocalization.

In ICASSP 2004, pp. 701–704. IEEE.

BIBLIOGRAPHY 115

Harness, R. and Carlton, R. (2001a). Automated systems for monitoring avian interactions with
utility structures and evaluating the effectiveness of mitigative measures. In Power Engineering
Society Winter Meeting 2001, Volume 1, pp. 359–362. IEEE.

Harness, R. and Carlton, R. (2001b). New solutions for bird collision and electrocution outage
problems. In Power Engineering Society Winter Meeting 2001, Volume 1, pp. 341–354. IEEE.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmillan College
Publishing Company.

Hearst, M. A. (1998). Support vector machines. IEEE Intelligent Systems pp. 18–28. July/August
1998.

Hertz, J., Krogh, A., and Palmer, R. G. (1991). An Introduction to the Theory of Neural Computation.
Redwood City, CA: Addison Wesley.

Hess, W. (1983). Pitch Determination of Speech Signals. New York: Springer-Verlag.
Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multiclass support vector

machines. IEEE Trans. on Neural Networks 13 (2), 415–425.
Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Trans. on Systems, Man,

and Cybernetics 1 (4), 364–378.
Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural

Networks 1, 295–307.
Jain, A. and Zongker, S. (1997). Feature selection: Evaluation, application and small sample

performance. IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (2), 153–158.
Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Trans.

on Pattern Analysis and Machine Intelligence 22 (1), 4–37.
Jardine, E. (1996). Bird Song Identification Made Easy. Toronto, Ontario: Natural Heritage / Natural

History Inc.
Jones, M. C., Marron, J. S., and Sheather, S. J. (1996). A brief survey of bandwidth selection for

density estimation. Journal of the American Statistical Association 91 (433), 401–407.
Kanji, G. K. (1999). 100 Statistical Tests. London: SAGE Publications.
Kecman, V. (2001). Learning and Soft Computing: Support Vector Machines, Neural Networks, and

Fuzzy Logic Models. Cambridge, Massachusetts: MIT Press.
Kemerait, R. C. and Childers, D. G. (1972). Signal detection and extraction by cepstrum

techniques. IEEE Trans. on Information Theory 18 (6), 745–759.
Khazanie, R. (1986). Elementary Statistics In a World of Applications (Second ed.). USA: Scott,

Foresman and Company.
Kohavi, R. and Provost, F. (1998). Glossary of terms. Machine Intelligence 30 (2), 271–274.
Kramer, A. H. and Sangiovalli-Vincentelli, A. (1989). Efficient parallel learning algorithms for

neural networks. In Touretzky, D. S. (Ed.) , Advances in Neural Information Processing Systems,
Volume 1, pp. 40–48. San Mateo, CA: Morgan Kaufman.

Kulkarni, S. R., Lugosi, G., and Venkatesh, S. S. (1998). Learning pattern classification—a survey.
IEEE Trans. on Information Theory 44 (6), 2178–2206.

Kuo, F. Y. and Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices of the AMS 52 (11),
1320–1328.

BIBLIOGRAPHY 116

Kwak, N. and Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Trans.
on Neural Networks 13 (1), 143–159.

Lee, Y., Oh, S., and Kim, M. (1991). The effect of initial weights on premature saturation in
back-propagation learning. In International Joint Conference on Neural Networks, Volume 1, pp.
765–770. Seattle, WA.

Lin, C.-J. (2005). Personal communication.
Loader, C. R. (1999). Bandwidth selection: classical or plug-in? The Annals of Statistics 27 (2),

415–438.
Marler, P. and Slabbekoorn, H. (2004). Nature’s Music: The Science of Birdsong. San Diego,

California: Elsevier Academic Press.
Marques, J. and Moreno, P. J. (1999). A study of musical instrument classification using gaussian

mixture models and support vector machines. Cambridge Research Laboratory, Technical
Report Series. CRL 99/4, June 1999.

Martin, K. D. (1998). Toward automatic sound recognition: Identifying musical instruments, pp.
1–6. Presented at the NATO Computational Hearing Advanced Study Institute. Il Ciocco, Italy.

Martin, K. D. and Kim, Y. E. (1998). Musical instrument recognition: A pattern-recognition
approach, pp. 1–12. Presented at the 136th meeting of the Acoustical Society of America.

Masters, T. (1993). Practical neural network recipes in C++. San Diego, USA: Academic Press
Professional, Inc.

McIlraith, A. L. (1996). Identification of birdsong using artificial neural computing. Master’s
thesis, University of Manitoba.

McIlraith, A. L. and Card, H. C. (1997). Birdsong recognition using backpropagation and
multivariate statistics. IEEE Trans. on Signal Processing 45 (11), 2740–2748.

Moore, A. W. (2001). Support vector machines. URL is http://www.cs.cmu.edu/~awm as of Jan.
2006. Unpublished.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001). An introduction to
kernel-based learning algorithms. IEEE Trans. on Neural Networks 12 (2), 181–201.

Noll, A. M. (1964). Short-time spectrum and ‘cepstrum’ techniqes for vocal-pitch detection.
Journal of the Acoustical Society of America 36 (2), 269–302.

Oppenheim, A. V. and Schafer, R. W. (2004). From frequency to quefrency: A history of the
cepstrum. IEEE Signal Processing Magazine. Sept. 2004, pp. 95–106.

Oppenheim, A. V., Willsky, A. S., and Young, I. T. (1983). Signals and Systems. New Jersey:
Prentice Hall.

Platt, J. C. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical report, Microsoft Research. MSR-TR-98-14.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In A. J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.),
Advances in Large Margin Classifiers. MIT Press.

Poggio, T. and Smale, S. (2003). The mathematics of learning: Dealing with data. Notices of the
AMS 50 (5), 537–544.

BIBLIOGRAPHY 117

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C:
The Art of Scientific Computing (Second ed.). New York: Cambridge University Press.

Proakis, J. G. and Manolakis, D. G. (1996). Digital Signal Processing: Principles, Algorithms and
Applications (Third ed.). New Jersey: Prentice Hall.

Rabiner, L. R. (1977). On the use of autocorrelation analysis for pitch detection. IEEE Trans. on
Acoustics, Speech and Signal Processing 25 (1), 24–33.

Rabiner, L. R., Cheng, M. J., Rosenberg, A. E., and McGonegal, C. A. (1976). A comparative
performance study of several pitch detection algorithms. IEEE Trans. on Acoustics, Speech and
Signal Processing 24 (5), 399–418.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annals of
Mathematical Statistics 27, 832–837.

Ross, M. J., Shaffer, H. L., Cohen, A., Freudberg, R., and Manley, H. J. (1974). Average magnitude
difference function pitch extractor. IEEE Trans. on Acoustics, Speech and Signal Processing 22 (5),
353–362.

Ruiz, A. and López-de-Teruel, P. E. (2001). Nonlinear kernel-based statistical pattern analysis.
IEEE Trans. on Neural Networks 12 (1), 16–32.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by
error propagation. In Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (Eds.) ,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, pp. 318–362. Cambridge, MA: MIT Press.

Rumelhart, D. E. and McClelland, J. L. (Eds.) (1986). Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume 1. Cambridge, MA: MIT Press.

Russo, A. P. (1991). Neural networks for sonar signal processing, Tutorial No. 8. In IEEE
Conference on Neural Networks for Ocean Engineering. Washington, DC.

Schölkopf, B., Burges, C. J. C., and Smola, A. J. (Eds.) (1999). Advances in Kernel Methods: Support
Vector Learning. Cambridge, Massachusetts: MIT Press.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. Cambridge, Massachusetts: MIT Press.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practise, and Visualization. New York:
John Wiley and Sons.

Scott, D. W. and Wand, M. P. (1991). Feasibility of multivariate density estimates. Biometrika 78 (1),
197–205.

Sdorow, L. (1990). Psychology. Dubuque, Indiana: Wm. C. Brown Publishers.
Shilton, A., Palaniswami, M., Ralph, D., and Tsoi, A. C. (2005). Incremental training of support

vector machines. IEEE Trans. on Neural Networks 16 (1), 114–131.
Sondhi, M. M. (1968). New methods of pitch extraction. IEEE Trans. on Audio and Electroacoustics

16 (2), 262–266.
Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data [In Russian]. Moscow: Nauka.

(English translation: Springer-Verlag, New York, 1982).
Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
Vapnik, V. (1998). Statistical Learning Theory. New York: John Wiley and Sons.

BIBLIOGRAPHY 118

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Trans. on Neural Networks 10
(5), 988–999.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON Convention
Record, pp. 96–104.

Winston, P. H. (1984). Artificial Intelligence (Second ed.). Reading, Massachusetts: Addison Wesley.
Wright, M. H. (2004). The interior-point revolution in optimization: History, recent development,

and lasting consequences. Bulletin (New Series) of the American Mathematical Society 42 (1),
39–56.

