
The Program-Size Complexity of Self-Assembled Squares

[Extended Abstract, Feb. 23, 2000]

Paul W. K. Rothemund
Dept. of Computer Science

University of Southern California

pwkr@cs.usc.edu

Erik Winfree
Dept. of Computer Science and CNS

California Institute of Technology

winfree @ caltech.edu

ABSTRACT
Molecular self-assembly gives rise to a great diversity of com-
plex forms, from crystals and DNA helices to microtubules
and holoenzymes. We study a formal model of pseudo-
crystalline self-assembly, called the Tile Assembly Model,
in which a tile may be added to the growing object when
the total interaction strength with its neighbors exceeds a
parameter 7-. This model has been shown to be Turing-
universal. Thus, self-assembled objects can be studied from
the point of view of computational complexity. Here, we de-
fine the program size complexity of an NxN square to be the
minimum number of distinct tiles required to self-assemble
the square and no other objects. We study this complexity
under the Tile Assembly Model and find a dramatic de-
crease in complexity, from N 2 tiles to O(log N) tiles, as 7-
is increased from 1 (where bonding is noncooperative) to 2
(allowing cooperative bonding). Further, we find that the
size of the largest square uniquely produced by a set of n
tiles grows faster than any computable function.

1. INTRODUCTION
The spontaneous self-organization of complicated structures
in natural systems has long fascinated physical scientists.
They ask, "How should order be defined for such struc-
tures?" and, "How are such structures generated?" It is
now clear that computational mechanisms play an impor-
tant role in understanding natural self-organization, at least
in biological systems: algorithms control the generation of
order. Research in DNA and molecular computation [Adle-
man, 1994] has established that universal computation can
be performed in biochemical systems, such as enzymatic
(ribosome-like) modification or translation of a heteropoly-
mer [Bennett, 1982; Kurtz et al., 1997], signal-transduction
cascades [Hjelmfelt and Ross, 1995; Magnasco, 1997], and
the self-assembly of protein or DNA into supramolecular
structures [Radin, 1991; Winfree, 1996]. How widespread
is influence of computational mechanisms in the generation
of order - does it spread beyond the biological domain?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed fbr profit oi" commercial advantage and that
copies bear this notice and the tall citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
STOC 2000 Portland Oregon USA
Copyright ACM 2000 1-58113-184-4/00/5...$5.00

For most of this century, order in self-assembled chemical
systems was thought to be well understood. Order was syn-
onymous with periodic order - the order of crystals. The
term crystal was reserved for materials characterized by one
of the 230 space groups; everything else was described as
disordered, amorphous, or glassy. The discovery of qua-
sicrystalline materials[Schectman et al., 1984], with their
"forbidden" five-fold symmetry shattered this monopoly but
left a vacuum-what is order if not periodic? One answer
is to define crystal as '% structure with an essentially dis-
crete diffraction pattern" [Senechal, 1995]. This patch for the
existing framework includes quasicrystals, but leaves little
room for still more exotic structures that may lurk undiscov-
ered and excludes altogether biological materials that have
complex order. These concerns have led the crystallogra-
pher Alan Mackay to propose that a "generalized crystal-
lography" might define order[Mackay, 1995] using computer
programs and cellular automata.

Such an algorithmic framework for studying self-assembly
is attractive for two reasons. First, because of Church's
thesis, we expect that computer programs will be able to
capture all of the complex behaviour of self-assembly - no
more complicated theory will be required. Second, such a
framework will allow principles of computer science to be
translated into statements about the physical world. For ex-
ample, the self-assembly of DNA structures may be mapped
naturally onto the languages of the Chomsky Hierarchy [Win-
free et al., 1998b].

Here, we are interested in studying the self-assembly of
objects from the point of view of computational complex-
ity. Standard complexity measures in computer science are
based on time, space, program size, and decidability. To
study the time complexity of self-assembly, Leonard Adle-
man has proposed a model that emphasizes counting time
steps during the self-assembly of a single copy of each of a fi-
nite number of tiles into the final structure. He has used this
model to analyze the self-assembly of N-long linear polymers
[Adleman, 2000]. Adleman has also asked, "What is the
complexity of generating an NxN square by self-assembly?"
Here, we answer this question for program-size complexity
under the Tile Assembly Model, where self-assembly occurs
in the presence of an infinite supply of a finite number of
tile types.

The Tile Assembly Model is a formal model for the self-
assembly of molecules, such as protein or DNA, constrained

459

to self-assemble on a square lattice; i.e. it is a model of
pseudo-crystalline growth. The model is an extension of the
theory of tiling by Wang tiles [Wang, 1961] to include a spe-
cific mechanism for growth based on the physics of molec-
ular self-assembly. A "program" consists of a finite set of
unit square tiles with colored sides (each available in an un-
limited number of copies). Each color represents a type of
molecular binding domain, and thus each color has an asso-
ciated "binding strength," which in our model must be an
integer. Start ing from a chosen seed tile, growth occurs by
addition of single tiles. (The growth of crystals by monomer
addition, as opposed to merging of crystal fragments, is a
common assumption in studies of crystal growth [Markov,
1995]; large defect-free crystals are not observed under phys-
ical conditions where growth occurs by aggregation of small
fragments.) Tiles bind a growing assembly only if their bind-
ing interactions are of sufficient strength, as determined by
the "temperature" parameter 7-.

7- measures the "cooperativity" of the binding interac-
tions. At 7- = 1, any binding interaction of s trength 1 or
greater is strong enough, by itself, to hold a tile in place.
This lack of cooperat ivi ty appears to go hand-in-hand with
a lack of computat ional power. At 7- = 2, however, single
strength-1 interactions are too weak to hold a new tile in
place; at least two strength-1 bonds must cooperate for a
tile to be added to an assembly. Under 7- -- 2 conditions
it has been shown tha t one-dimensional cellular au tomata
can be simulated; hence 7- = 2 self-assembly is universal
[Winfree, 1996]. I t is interesting to observe tha t cooperative
effects play a major role in gene regulation [Ptashne, 1992]
and many other biological systems.

Branched DNA molecules [Seeman, 1998] provide a di-
rect physical motivation for the Tile Assembly Model. DNA
double-crossover molecules, each bearing four "sticky ends"
analogous to the four sides of a Wang tile, have been de-
signed to self-assemble into a periodic two dimensional lat-
tice [Winfree et al., 1998a]. The binding interactions be-
tween double-crossover molecules may be redesigned by chang-
ing the base sequence oof their sticky ends, thus allowing
arbi t rary sets of molecular Wang tiles to be investigated in
the laboratory. From a physically-based stochastic model of
such a system, the Tile Assembly Model is obtained in the
limit of strong binding domains and low monomer concen-
trat ions [Winfree, 1998].

Macroscopic systems for 2D self-assembly based on lat-
eral capillary forces [Hosokawa et al., 1996; Bowden et al.,
1997; Bowden et al., 1999; Rothemund, 2000] provide ad-
ditional motivation for the Tile Assembly Model. In these
systems millimeter-scale plastic tiles float at an interface be-
tween hydrophobic and hydrophilic liquids (e.g., oil and wa-
ter) and self-assemble into lattices as the system is agi ta ted
on a shaker. Binding interactions between tiles are spec-
ified by sequences of hydrophilic and hydrophobic patches
applied to the edges of tiles; when sequences match, capil-
lary forces mediate bonds between tiles. Tile sets with up to
four distinct Wang tiles have been created by this method
[Rothemund, 2000]. Analogies between such systems and
molecular self-assembly are not yet quanti tat ive, but it has
been observed tha t the frequency of shaking acts similarly
to temperature and tha t dimers bind cooperatively to lat-

tices. Thus cooperative T = 2 assembly may be possible in
a capillary force-based system.

It is straightforward to restrict the Tile Assembly Model
to 1D, or to extend it to 3D. However, the 1D case allows
no interesting computat ion to be performed; it is easy to
see tha t to produce a 1D line of N tiles requires N tiles for
all 7- > 0. This result exactly parallels the decidability the
1D tiling problem; the 2D tiling problem, inc contrast, is
undecidable [Berger, 1966]. At the other extreme, it seems
unlikely tha t 3D allows for phenomena fundamental ly differ-
ent from 2D, since universal computat ion is already possible
in 2D.

2. A MODEL OF SELF-ASSEMBLY
Our discussion of the Tile Assembly Model will make use
of the following definitions. N is the set of natural num-
bers {0, 1, 2 , . . . }, Z = N U - N is the set of integers, and
R is the set of real numbers. We will be working the two-
dimensional grid of integer positions, Z x Z. The directions,
79 = {N, E, S, W}, will be used as functions from Z x Z t o Z x
Z: N(x,y) = (x , y + l) , E(x,y) = (x + l , y) , S(x,y) = (x , y -
1), and W(x, y) = (x - 1, y). We say tha t (x, y) and (x', y ')
are neighbors if (x' , y ') E {N(x, y), E(x, y), S(x, y), W(x, y)}.
Note tha t E -1 = W, and N -1 = S.

A p a r t i a l l y o r d e r e d se t (poset) (S, <) is a set S and
a reflexive, transitive, ant isymmetr ic relation <. If m < a
a n d m < b a n d V c E S , [c < a a n d c < b] ==~ c < m , then
m is called the m e e t of a and b. I f a < j and b_< j and
Vc E S,[a < c a n d b < c] ==~ j < c, t h e n j is called the
j o i n of a and b. If all pairs a, b have both a meet and a join,
then (S, <) is called a l a t t i c e .

A (Wang) t i l e over ~ is a unit square where each side
is colored from the set ~ of b i n d i n g d o m a i n s ; formally,
a tile t is a 4-tuple (aN,aE,aS,aW) E E 4 indicating the
binding domains on the north, east, south, and west sides.
For D E 79, we write bdD (t) to refer to the binding domain of
the respective side of tile t. According to this definition, tiles
may not be rotated; (aN,aE,aS,CrW) • (aW,alV,aE,aS).
A special binding domain null represents a non-interaction,
and the special tile empty = (null, null, null, null) is used
to represent the absense of any other tile.

The binding domains determine the interaction between
tiles; that is, when two tiles may be placed next to each
other. A function g : E x E --+ F, where null E E, is
a s t r e n g t h f u n c t i o n if Va, a ' E E, g(a, a') = g(a', a) and
g(null, a) = 0. Two tiles tha t abut on sides labelled a and a '
bind with strength g(a, a'), as discussed below. Here, we will
only consider g such tha t mismatched sides have no inter-
action strength and matching sides have positive strengths
given in integral units, in which case the strength of a side

¢

labeled by a is ~(a) E N and g(a,a') = I - gO(a)
if (7 G !

otherwise.

Let T be a set of tiles containing the special tile empty.
A c o n f i g u r a t i o n of T is a function A : Z x Z --+ T. We
write (x, y) E A iff A(x, y) ¢ empty. For D E 79, we say the
tiles at (x, y) and D(x, y) b i n d to each other with strength

gA (x, y) = g(bdD(A(x, y)), bdD-1 (d(D(x, y)))).

460

@

D

\

" , . 6
0

0 o

0 " 0
o o

o

" 6 .o
0 0

o o o

'0 °°0

,o 0"9
- - L I L L C

""'6
0

0 o

0 " 0
O 0
o o

o . o
o
0

0 " 0
0 0
0 o

0 " 0
o o
0 o .?.?

"0"9
L L

0

",, °0 !°io R
8 8

i o6c 9 c9c R
o o l i , I

o ° 1 ~ i . 1 o R
0 1 1 0
o 1 1 0

0. .1 olOCO R,
O I O l

" O " l 0 ° ' 1 R
1 0 0

' .O' .1 ~o0 o 0 oR
O o o o l]

"O'°O 'o 1 °° 1 °R
8 8 1 ° o

"0 i R
°9i 9 "9" ! oR
f i l l L L s

F i g u r e 1: S i m u l a t i n g a b i n a r y c o u n t e r w i t h se l f -assembly . At left , a set T of s e v e n t i les is de p i c t e d . I n this
f igure and all f igures tha t fo l low t h i c k s ides h a v e s t r e n g t h 0, th in s ides h a v e s t r e n g t h 1~ and d o u b l e - l i n e d s ides
have s t r e n g t h 2. A t r igh t , a n a s s e m b l y p r o d u c e d b y T = (T, {S},g, 2) is shown. T h e a s s e m b l y is no t t e r m i n a l
and a r r o w s i n d i c a t e p o s i t i o n s at w h i c h it m a y grow.

If gA(x,y) > 0, then the tiles m a k e a b o n d . If t is a

tile, A~ ='v) is the configuration such that A~='V)(x,y) = t
and all other sites are empty, a(°'°) is called the e m p t y ~ e r n p t y

configuration.

Addition of configurations A and B is defined by C =
A + B where

[A(x,y)
C(=,Y) = I Boo(~,V)

if B(x, y) = empty
if A(x, y) = empty
otherwise.

Note that C is not necessarily a configuration, because C
might contain oo values.

Union of configurations A and B is defined by C = A 13 B
where

(A(x,y)
C(=,Y) = l Boo(~,Y)

if A(x, y) = B(x, y) or B(x, y) = empty
if A(x, y) = B(x, y) or A(x, y) = empty
otherwise.

Note that C is not a configuration iff there is a site (x, y) s.t
A(x, y) and B(x, y) are distinct non-empty tiles.

Intersection of configurations A and B is defined by C =
A n B where

A(x, y)
C(z ,Y)= Iempty

if A(x, y) = B(x, y)
if A(x, y) = empty or B(x, y) = empty
otherwise.

Note that C is not a configuration iff there is a site (x, y) s.t
A(x, y) and B(x, y) are distinct non-empty tiles.

The free e n e r g y of a configuration C is the sum of all
interaction strengths between tiles (in contrast to standard
usage in chemistry, favorable interactions are given by pos-
itive numbers):

1 c(c) = [~ ~ gZ(x, u).
w , y E Z D E : D

The t e m p e r a t u r e T gives the minimal interaction strength
required to overcome thermal disruption. A configuration C
is a T - s t a b l e a s s e m b l y if for all non-empty configurations
A and B such that C = A + B, G(C) > G(A) + G(B) + T.
That is, a T-stable assembly cannot fall apart into two pieces
without decreasing the total G by T or more. Note that for
T > 0, a T-stable assembly must contain a single connected
component. When T is understood, we simply say that C
is an assembly.

A t i le s y s t e m T is specified by the quadruple (T, S, g, 7-),
where T is a finite set of tiles containing empty, S is a set
of T-stable seed as sembl ie s , g is a strength function, and
T > 0 is the temperature. In this paper, we consider only
IS[= 1, where S = A~ (°'°) for some seed t i le s.

Self-assembly is defined by a relation between configu-
rations: A --rT B if there exists a tile t E T and a site
(x,y) such that B = A + A~ ='v) and B is T-stable. Since

G(A~ ='v)) = O, G(B) > G(A) + T; i.e., a tile may be added
to an assembly if the summed strength of its interactions
with its neighbors exceeds a threshold set by the temper-
ature. In particular, at T = 1, a tile may be added if it
makes any bond to a neighbor, whereas at 7- = 2, to be
added the tile must either make two weak bonds or a single
strong bond. --~.~ is the reflexive transitive closure of --+T.

461

The tile system defines a partially ordered set, the pro-
d u c e d assemblies Prod(T) , where:

Prod(T) = {A s.t. 3s • S s.t. s -4~- A}

and

A < B iff A--+~ B.

Another set, the t e r m i n a l assemblies T e r m (T) , is defined
as the maximal elements of Prod(T):

T e r m (T) = {A • Prod(T) s.t. l IB s.t. A < B}.

The produced assemblies include intermediate products of
the self-assembly process, whereas the terminal assemblies
are just the end products, and may be considered the "out-
put." If

A • Prod(T) ~ 3B • T e r m (T) s.t. A - ~ - B

then T is said to be ha l t ab l e , in the sense that every path
of self-assembly can eventually terminate. If T is haltable
and T e r m (T) is finite, T is said to be h a l t i n g in the sense
that every path of self-assembly does eventually terminate.
A halting tile system u n i q u e l y p r o d u c e s C if T e r m (T) =
{C}. Note that if a tile system uniquely produces C then
Prod(T) is a lattice: the join of A and B is A tA B, and the
meet of A and B is max{C' • Prod(T) s.t. C' < (A N B)}.
In general, if Prod(T) is a lattice, we say that T produces a
u n i q u e p a t t e r n - T need not be halting nor even haltable.

The universality of the Tile Assembly Model follows from
an elaboration of the ideas used to prove the undecidabil-
ity of the origin- and diagonal-constrained tiling problems
[Wang, 1963; Winfree, 1998]. In this construction, the perime-
ter of produced assemblies encodes the state of the Turing
machine. Tile additions change the information exposed on
the perimeter, effecting the state transitions. Thus, informa-
tion computed as by a Turing machine can direct the growth
of the assembly, and thus direct complex pattern formation.

As an example, consider the tile system of Figure 1, con-
sisting of four rule tiles with strength-1 binding domains,
two border tiles with strength-1 and 2 binding domains, and
one seed tile with strength-2 binding domains. At 7" -- 2,
these tiles count in binary; the n th row above the origin rep-
resents the binary integer n. This self-assembly "program"
is analogous to an infinite loop - there are no terminal as-
semblies. The reader is encouraged to start with the seed
tile S and to verify that a unique pat tern is produced: i.e.
Prod(T) is a lattice. Rule tiles may be added only if both
their eastern and southern neighbors are already in place,
and there is a unique rule tile for each possible pair of bind-
ing domains the neighbors could present; furthermore, the
property that only northern and western sides axe exposed
in the assembly is preserved from step to step. For the same
tile set at 7" = 1, the order of self-assembly is not similarly
constrained; tiles may be added even when one of two neigh-
bors is a mismatch, and thus many disordered assemblies are
produced.

3. COMPLEXITY OF SELF-ASSEMBLY
In this section we will be measuring program-size complexity
using asymptotic notation. All functions will be from N -4
N. A function f (n) is n o n - d e c r e a s i n g iffVn, f (n) <_ f (n +

1). A function f (n) is u n b o u n d e d iff Vc, 3n s.t. f (n) > c.
We say f (n) = O(g(n)) iff3c, no s.t. Vn > no, f (n) <_ cg(n).
We say f (n) -- f~(g(n)) iff 3c, n0 s.t. Vn > no, f (n) >_ cg(n).
We assert proposition P(n) i n f in i t e ly o f t e n iffVn0 > 0, 3 n >
no s.t. P(n). Define Oi.o. ("big-O infinitely often") such
that f (n) = O,.o.(g(n)) iff 3c s.t. f (n) <_ cg(n) infinitely
often. We assert proposition P(n) for a l m o s t all n iff
i. I~1<-<-o s.t. P(-)}l = 1. Define f~ ("big-D al- Zmno--*oo " ~ - no
most always") such that f (n) = f~ (g(n)) iff 3c s.t. f (n) >
c9(n) for almost all n.

We can now formally describe the program-size complex-
ity of an N x N square. An assembly A is an N x N s q u a r e
if there exists a site (x0, yo) such that (x, y) • A iff x >_ x0
and x < x 0 + N and y _> y0 and y < y o + N . In other
words, the choice of tiles may be arbitrary, so long as they're
there. Square A is a ful l s q u a r e if for all (x, y), (x', y') • A
such that (x, y) and (x', y') are neighbors, (x, y) and (x', y')
bind with non-zero strength. In other words; every adjacent
pair of tiles must have non-zero interaction strength. We
are interested in which squares can be self-assembled by tile
systems:

Sq T = {(N,n) • N x N s.t. there exists a tile system

W ---- (T, {s}, g, 7-), IT[-- n + 1,

and T uniquely produces an N x N full square }.

We define the program size complexity K~A(N) of a square
to be the minimum number of distinct non-empty tiles re-
quired to uniquely produce the square - physically the num-
ber of distinct types of molecules that must be prepared.

KTsA(N) = min{n s.t. (g , n) • Sq T}

Our investigations rely on several constructions. We need
an easy way to verify that these constructions do indeed
uniquely produce the target structure. For each construc-
tion, the argument is an elaboration of the argument given
for the binary counter tiles, only now an assembly may
have more than one diagonal growth front. Specifically, the
property that is preserved from step to step is that the as-
sembly is "stop-sign'-shaped: the orientations of the ex-
posed sides along the (clockwise) perimeter are of the form
N * { N , E } * E * { E , S } * S * { S , W } * W * { W , N } * . These argu-
ments rely on showing that there is exactly one strength-2
bond joining each row and each column.

We begin by studying KTsA(N) for T = 1 and obtain the
following theorem:

THEOREM 1. K~A (N) - - N 2.

PROOF. To show K~A(N) <_ N 2, we construct N 2 tiles,
one for each position in the square, with a unique strength-1
binding domain for each adjacent pair of tiles as in Figure 2.
To show K~A(IV) >_ IV 2, suppose a tile set T with]TI < N 2
produces an NxN full square A (Figure 3). Then some tile i
is present at two sites in A, say (xx,yl) and (x2, y2). Let L
be the "L"-shaped (or possibly linear) assembly consisting
only of the tiles at (x l , y a) . . . (x e , y l) . . . (x2,ye); let L 1 be

462

a ,

5 8
5 9 h i 0 7 1 1 1 1 2
~ 9 6 1 0 ~ 1 1 s 1 2

9 1 3 1 0 1 4 i i ~t 12 t6
9 13 1o 14 11 15 i 116

5 5 5 5
5 6 ~ 6 5 6 5 6
5 6 5 6 5 6 1 6

67 6~ 67

P-1
F i g u r e 2: F o r m a t i o n o f s q u a r e s at 7" -- 1. (a)) V 2 = 16 t i l e s w i t h u n i q u e s i d e l a b e l s u n i q u e l y p r o d u c e a t e r m i n a l
4 x 4 ful l s q u a r e at 7- = 1. (b) 2 N - 1 = 7 t i les u n i q u e l y p r o d u c e a 4 x 4 s q u a r e (b u t th i s is n o t a fu l l s q u a r e s ince
t h i c k s ides h a v e s t r e n g t h 0). E x c e p t for t h e s ides l a b e l e d w i t h a c ircle , each i n t e r a c t i n g pa ir o f t i l e s share a
u n i q u e s i d e l a b e l . T h i s c o m b - l i k e c o n s t r u c t i o n is c o n j e c t u r e d to b e m i n i m a l for N x N s q u a r e s a s s e m b l e d at
7 - = 1 .

(x 2 , y z)

_N-

(x , , y ,) I L ~ ~

• . . L 2
n

F i g u r e 3: N o 7" = 1 t i l e s y s t e m w i t h f e w e r t h a n N 2 t i l e s can u n i q u e l y p r o d u c e a n N × N square . A ful l N x N
s q u a r e w i t h f ewer t h a n N 2 t i l e s m u s t h a v e s o m e t i l e i p r e s e n t at t w o s i tes . C o n s i d e r t h e a s s e m b l y R (t h e
w h i t e t i l e s) w h i c h i n c l u d e s an a s s e m b l y L (b o u n d e d b y t h e t i l e s i) , t h e s e e d t i l e S , a n d a t i l e t h a t c o n n e c t s
t h e s e e d t i le to L. R can b e e x t e n d e d i n d e f i n i t e l y w i t h t h e a d d i t i o n o f t r a n s l a t e d s e g m e n t s o f L (e.g. L~-I
s h o w n in gray) .

the assembly such tha t L] + (x 2 , y 2) -~ L; let L 2 be the
assembly such tha t (x l , y l) + L 2 = L; let L~(x, y) = Lk(x +
n * (xz - x l) , y + n * (y~ - Yl)) be a t rans la ted version of L ~
for k = 1, 2; and let R consist of L, S, and the fewest tiles
in A required to connect S to L. Because R is conta ined in
A and A is a full square, all adjacent pairs of tiles in teract
on a s t rength- (a t least)-I side, and therefore S --+~- R. At
least one of a 1 2 2 { L - l , L+x, say be added to L - a , L+I} , L~, can
R, result ing in a larger assembly also p roduced by T . This
can be cont inued indefinitely: if s = +1 then for all n,

n r R + Y]~=+x L~ is in Prod(T); if s = - 1 then for all n, R +
- - 1 r ~ i = - n Li is in Prod(T) . This contradic ts the assumpt ion

tha t T is hal t ing and te rmina tes in N × N full squares. •

At 7- = 2 the s i tuat ion is markedly different.

THEOREM 2. K ~ A (N) = O(N) .

PROOF. Figure 4 shows two const ruct ions for an N x N full
square using 2 N (Figure 4a) and N + 3 (Figure 4b) tiles
respectively. Self-assembly from the seed tile 1 proceeds ini-
tially by single s t rength-2 interact ions creat ing the borders
with the numbered tiles. As the border grows, two coop-
erat ive s t rength-1 in teract ions allow the blank tile to fill in

and comple te the square. For the tiles at the right, the A
and B tiles enter a new co lumn by thei r s t rength-2 side,
thus allowing the rest of the co lumn to be filled wi th blanks.
The N × N full square can be easily verified to be a terminal
assembly. •

This is only the beginning. The cons t ruc t ion in Figure 4b
can be combined with a f ixed-width version of the binary
counter of F igure 1 to ob ta in a set of tiles t ha t produce the
NxN full square by count ing in b inary instead of by counting
in unary.

THEOREM 3. K 2 A (N) = O (l o g N) .

PROOF. Figure 5 cons t ruc ts an N × N full square using
n + 22 tiles, where n = [l o g N] . n + 2 tiles, including
the seed tile, p roduce an (n - 1) × (n - 1) square as in
the previous construct . Addit ional ly , the n - 1 tiles in the
seed row have upper sides encoding the bits of the integer
c = 1 + 2 "~-1 - (N - n)/2, the init ial value of the counter.
We must use a f ixed-width version of the counter tiles of
Figure 1; this requires a special set of tiles for the leftmost
and r igh tmos t columns of bits. The counter counts from c
to 2 n - l , using two rows for each integer. In order to detect

463

~ " ~ ' ~ 1 1 2 ~ 4 ~ 5 b [' ~ ' ~

~] [~ 7 ') () (

9, EBF3

~ f f , ~B' A(

' B " A ') (

B' 'A~)

F i g u r e 4: F o r m a t i o n o f fu l l s q u a r e s a t T = 2. (a) 2 N = 10 t i l e s u n i q u e l y p r o d u c e 5 x 5 fu l l s q u a r e . E x c e p t fo r
t h e s i d e s l a b e l e d w i t h a c i r c l e , e a c h i n t e r a c t i n g p a i r o f t i l e s s h a r e a u n i q u e s i d e l a b e l (b u t w e d o n o t l a b e l
t h e m e x p l i c i t l y a s in F i g u r e 2.) (b) N + 4 = 9 t i l e s a r e u s e d .

i i ,l i

o
- , O i ' i @

...:o i l l@

A()

'=" t

• /

°

' a (, . I
i n

i

L

2q
)

O

F i g u r e 5: F o r m a t i o n o f N x N s q u a r e u s i n g O(log N) t i l e s . C o n s t r u c t i o n s t a r t s w i t h a n n - 1 x n - 1 s q u a r e as
in F i g u r e 4b . H e r e N = 52, n = 6 a n d 28 t i l e s a r e u s e d . T h e c o n s t r u c t i o n i l l u s t r a t e s t h e c a s e fo r e v e n N - n;

t h e f i r s t r o w a b o v e t h e s e e d r o w is a c o p y r o w fo r o d d N - n.

when the counter has finished, we use a l te rna t ing rows to in-
crement the counter from right to left, then to copy the the
bits from left to r ight unless the lef tmost bit jus t rolled over
from 1 to 0. In the la t te r case, the t i le presents a s t rength-2
side wi th a label not found on any other tiles, thus hal t-
ing the counter. (The s t rength-2 side will be used in our
next construct ion; here, any s t rength would suffice.) The re
is a special t i le for the r igh tmos t bit in the first increment
row above the seed row. This ti le contains a s t rength-2 side
to ini t iate the a -b diagonal , thus filling in the rest of the
square. Overall , the counter requires 18 tiles; the seed row
requires n - 1 tiles; the two diagonals require 4 tiles; and
there are two blank tiles. •

But we can do much bet te r : by recursively i te ra t ing the
above const ruct ion one can produce N x N squares wi th

2 2 2 . . . 2 d e f
N > = 2 * * n

n t i m e s

using only O(n) tiles. Define log* N as the least n such tha t

2 * * n > N .

THEOREM 4. K~A(.N) =- Oi.o.(log* N) .

PROOF. Our proof is by induct ion. Let S '~ refer to a tile
sys tem conta ining fewer than 22n tiles (including the a, b,
and blank tiles) t h a t uniquely produces an N×N full square

such t h a t

• N > 2 * * n .

• All binding domains on the left and b o t t o m are of

s t rength 1 or 0.

• All binding domains on the r ight have the s t rength-1
blank label.

• The binding domains on the upper side conform to
the pa t t e rn xy*zb*a where x is a s t rength-2 binding
domain tha t occurs nowhere else, and y, z, b, and a are
dis t inct s t rength-1 binding domains .

We show tha t S ~ exists for all n. The base case n = 1 is
tr ivial . The induct ive s tep is i l lus t ra ted in Figure 6. First ,

464

f"
eD

©

f-

x I " y * I Z - -
.

S"

b* I

7
7

!
r
!

!

l

a

F i g u r e 6: F o r m a t i o n o f N×N s q u a r e u s i n g Oi.o.(log* N) t i l e s . G i v e n a s e t o f t i l e s S n t h a t p r o d u c e a n N×N fu l l
s q u a r e t h a t s a t i s f i e s t h e r e c u r r e n c e ~ t h e a d d i t i o n o f 22 n e w t i l e s r e s u l t s in S n+l a n d p r o d u c e s a (N + 2 x
2/7) × i N + 2 :x: 2 N) fu l l s q u a r e . N e w s i d e l a b e l s (w i t h d o u b l e d s y m b o l s) p r e v e n t c o u n t e r t i l e s f r o m S n f r o m
i n c o r p o r a t i n g in t h e S '~+1 c o u n t e r .

there are 5 tiles that , in i t ia ted by x, produce an initial
s tr ing of O's for a new f ixed-width counter, and provide a
s t rength-2 side for a new a - b diagonal. T h e n there are 16
tiles equivalent to the counter tiles in Theorem 3 but us-
ing new side labels; the counter counts to 2 N. The diago-
nal fills in the rest of the square, now with sides of length
N + 2 × 2 N > 2 jv > 2 • *(n + 1). Therefore S '~ exists for all
n, and for those n,

22 log* N _> 22n > K~A (N).

log* N is an exceedingly slowly growing function; the above
const ruct ion shows tha t very large squares can be assembled
with a very small number of tiles. But we can do much bet-
ter yet! By embedding the s imulat ion of a Turing machine
in the growth of a square we show that :

THEOREM 5. K~AiN) = O~.o.(f(N)) for f (N) any non-
decreasing unbounded computable function.

PROOF. Our proof relies on a self-assembly version of the
Busy Beaver problem [Rado, 1962]. Define:

BTSAi ~) -~ m a x { N s.t. (N,n) • SqT}.

To show Theorem 5, we first show

B~A(n) = f2(F(n)) for any computab le funct ion F(n).
(1)

Theorem 5 follows from (1) by contradic t ion: if false, then
there exists a computab le , non-decreasing, unbounded func-
tion f (N) such tha t 3N0 s.t. VN > No, K~A(N) > f iN) .
Let F(n) = m a x { N s.t. N = 0 or f (N) < n}; this is a com-
putab le function. Note tha t B~A(n) > F(n) requires t ha t
3 (N , n) E Sq ~ s.t. N > F(n) and therefore f (N) > n and
K~A(N) < n. For N > No this contradic ts K~A(N) >
f (N) . Therefore, for all n > f(No), B~A(n) < F(n), con-
t rad ic t ing (1) and establ ishing Theo rem 5.

Recall t ha t Bt(m) = ~2(F'(m)) for any computab le func-
t ion F'(m) where:

Bt(m) =max{t s.t. m = qs and there exists a

q-state, s -symbol Tur ing machine tha t

hal ts on a blanl~ t ape in t steps}

Let M be a q-state, s -symbol Tur ing machine tha t halts
on a blank t ape in Bt(m) steps, where m = qs. We will con-
s t ruct a square of size N = 2Bt(m)+3 using n = 12qs+4s+9
tiles by s imula t ing M wi th tiles, s imilar to the construc-
t ion of Robinson [Robinson, 1971]. Given any n > 41, we

I n - 1 7 [and ~ n n - ~ q n s n ; o u r con- will use s , = 2, q~ = L 24 J,
s t ruct ion will need only 12qns~ + 4s~ + 9 < n tiles. Then
B~A(n) >_ 2Bt(m~) + 3 = f~(F'(m~)). For any computab le
funct ion F (n) , we can find ano ther computab le function
F'(m) s.t. Vn, F'(m~) > F(n). Therefore, we arrive at

i l) .

We cons t ruc t the square by growing four identical sim-
ulat ions of the Tur ing machine M , one from each side of
a seed tile. Each s imula t ion stays wi th in one of the four

465

The three-state Busy

A0 -- B1R

B0 ~ A 1 L

CO - - B 1 L

for qs--q 's 'L make read tiles

for qs~q ' s 'R make read tiles

4 x left read tiles

4 x right read tiles

4 x write tiles

4 x symbol tiles

seed and initial tiles

diagonal tiles

Beaver machine:

A1 - - C 1 L

B1 - - B 1 R

C 1 -- halt

~ [~ and write t i l e ~

~] [~ and write tile [- ~

_ 2 _

- - - e - ~ - - - J S

F i g u r e T: F o r m a t i o n of a n NxN s q u a r e b y g r o w i n g four i d e n t i c a l s i m u l a t i o n s of a g i ve n T u r i n g m a c h i n e . T h e
B u s y B e a v e r m a c h i n e s i m u l a t e d he re has t h r e e s t a t e s (q0 = A, ql = B,q2 = C) a n d two s y m b o l s (so = 0, sl = 1).
N o t e t h a t R d e n o t e s r igh t , L d e n o t e s left , a n d "4x" i n d i c a t e s t h a t four v a r i a t i o n s of a t i le a re used , one for

each compass d i r ec t ion .

regions bounded by the diagonals of the square; when M
halts, the square is complete. We require 4 tiles to create
the four "half-diagonals" defining these boundaries between
simulations. For each simulation we require 1 "initial state"
that matches the seed tile, s symbol tiles, qs write tiles, and
2qs read tiles, giving a total of 3qs + s + 1 tiles per sim-
ulation. We describe these tiles for the TM simulation to
the north of the seed tile. Recall that a tile is a 4-tuple
(aN, aE, as , aw) representing the north, east, south, and
west binding domains. Binding domain strengths are 1 un-
less noted. Each of the four simulations has its own version
of the side labels described, distinguished by superscripts
(we omit the superscript N from the description of north-
facing simulation below). The symbol tile for symbol s is
(as, a~, as,ae) , where a8 is a binding domain representing
the symbol s and ae is a binding domain indicating that
the TM head is not present. For each state-symbol pair
(q, s), the left read tile (aq,s, ae, as, aq) and the right read
tile (aq,~, aq, as, ae) represent the TM head in state q enter-
ing a tape cell (from the left or from the right) and reading
the symbol s. The binding domains aq,~ have strength 2;
this is necessary for the TM head to enter the next row of
the simulation. The write tiles, representing the action the
TM head takes, depend on the form of the state transition
table entry. For each entry of the form (q,s) -+ (q ' , s ' ,L)
there is a write tile (a~,, ae, aq,~, aq,); for each entry of the
form (q, s) --+ (q', s', R) there is a write tile (a~,, aq,, aq,s, ae);
for each entry of the form (q, s) --~ halt there is a write tile
(ahalt, ae, aq,s, O'e).

To start the Turing Machine in state qo reading the blank
symbol so, the initial tile for the northern simulation is
I N = (aqo,so,ae,as,a~), where as is a strength-2 bind-
ing domain. The initial tiles for all four simulations bind

(as , as , a s, a w) • The four diagonal to the seed tile S = N E
N N W W N E E tiles, N W = (aso,ae ,ae ,aso), N E = (Crso,asoae ,aN,) ,

E E S S (a Y , a S , S a Wo) pad S E (ae , aso, a~o, ae), and S W
the tapes with extra cells containing the blank symbol so
and delimit the four simulations. •

Theorem 4 gives the construction of infinite number of
very large squares made from a very small number of tile
types. Theorem 5 implies that, for an infinite set of N, the
number of tiles required to assemble an NxN square can be
made "arbitrarily small". How well can one do in general?
Unfortunately, extremely concise self-assembly programs are
not common. Then we show:

THEOREM 6. K ~ A (N) ~loglogN,"

PROOF. The Kolmogorov complexity of an integer N with
respect to a universal Turing machine U is

K u (g) = min IP] s.t. U (p) - - - ~ N

where # N is the binary string representing N. (See [Li
and Vitanyi, 1997] for results on Kolmogorov complexity.)

1 A
Recall that K u (N) < [logN] - A for at most ~ of all
N, by the pidgeonhole principle. Therefore, for any e > 0,
Ku (N) > (1 - e) log N for almost all N.

There exists a Turing machine SA2 (with program pSA2)
that, given a binary description of a 7- = 2 tile system, sim-
ulates their self-assembly, making an arbitrary choice when
multiple tile additions are possible, and returns the maximal
dimension of the resulting assembly if self-assembly termi-
nates. A tile system T with n tiles can be described by dw

466

containing f(n) = 4n [log 3n] bits; each of 4n sides may have
a strength in {0, 1, 2}, and non-zero-strength labels may be
defined by the first tile (in some arbitrary order) with the

• same tile on the opposite side. Thus if tile system T uniquely
produces an NxN full square, then p : PsA2dT will return
N when input to U. Therefore, for almost all N,

(1 - e) l o g N < Kv(N) < [PSA2[+ f(K2A(N))

< C1 + C2K~A(N)[C3 + loglog N],

where we used K~A(N) : O(log N) from Theorem 3. The
final result follows from simple algebra. •

In other words, a Kolmogorov-random integer N cannot
be compressed by the self-assembly model.

4. DISCUSSION
Ti les or labels. This paper discussed the program-size
complexity of self-assembled squares, where complexity was
measure by the number of distinct tile types involved. An
alternative complexity measure is the minimum number of
distinct side labels required to uniquely produce the object.
The number of labels will be relevant in a physical system
where the number of distinct binding interactions is limited
due to imperfect specificity of binding. Do both measures
give asymptotically similar results?

K o l m o g o r o v complex i ty . A main conclusion of this
paper is that the program-size complexity of self-assembled
objects (at 7- = 2) looks remarkably similar to the usual
program-size complexity with respect to Turing machines.
This is hardly surprising, since self-assembly at T = 2 can
simulate Turing machines. However, Figure 8 makes K~A
look perhaps more similar to K~] than it ought to: K~A is
computable due to the monotonic nature of self-assembly
growth (each tile set can be simulated in turn until it halts
or exceeds an N x N region), whereas of course Ku is not
computable.

Dis in tegra t ion . The difference between K~A and Ku
comes from the monotonic nature of self-assembly: the grow-
ing object always gets bigger, so "temporary results" cannot
be larger than the object itself. A simple device circumvents
this difficulty: select a subset D C T; after self-assembly is
complete, the tiles in D are destroyed in all assemblies in
Term(T), and the resulting assemblies are considered the
output of the computation. A molecular implementation
might make the tiles in D out of RNA, while the tiles in
T \ D are DNA; then, an RNase enzyme can be used to
destroy all tiles in D.

Let / ~ A be the full square complexity for the model with
disintegration. The ability of T : 2 self-assembly to sim-
ulate Turing machines can now be used to make squares:
given a Turing machine program p such that U(p) = #N,
we generate C + IPl tiles (all in D) that simulate p and ex-
pand the result into a template of length N. Now a few
final tiles (not in D) complete the square; only this square
will survive disintegration. Thus / ~ A < Ku(N) + C; we
already know Kv (N) = O(I~2A (N) log log N). That is, the
only difference is that /£~A measures the number of tiles
instead of the number of bits required to specify the tiles.

5. ACKNOWLEDGEMENTS
We thank Len Adleman for discussions and for raising the
questions that motivate this paper. We thank Richard Lip-
ton, John Reif, Ming-Deh Huang, Ashish Goel, Qi Cheng,
Lior Pachter and Lisa O'Rourke for comments and discus-
sions.

6. REFERENCES
Adleman, L. M. (1994). Molecular computation of
solutions to combinatorial problems. Science,
266:1021-1024.

Adleman, L. M. (unpublished manuscript, 2000).
Toward a mathematical theory of self-assembly.

Bennett, C. H. (1982). The thermodynamics of
computation - a review. International Journal of
Theoretical Physics, 21(12):905-940.

Berger, R. (1966). The undecidability of the domino
problem. Memiors of the AMS, 66:1-72.

Bowden, N., Choi, I., Gryzbowski, B., and Whitesides,
G. (1999). Mesoscale self-assembly of hexagonal plates
using lateral capillary forces: Synthesis using the
"capillary bond". Journal of the American Chemical
Society, 121:5373-5391.

Bowden, N., Terfort, A., Carbeck, J., and Whitesides, G.
(1997). Self-assembly of mesoscale objects into ordered
two-dimensional arrays. Science, 276:233-235.

Hjelmfelt, A. and Ross, J. (1995). Implementation of
logic functions and computations by chemical kinetics.
Physica D, 84:180-193.

Hosokawa, K., Shimoyama, I., and Miura, H. (1996).
Two-dimensional micro-self-assembly using the surface
tension of water. Sensors and Actuators A, 57:117-125.

Kurtz, S. A., Mahaney, S. R., Royer, J. S., and Simon,
J. (1997). Biological computing. In Hemaspaandra, L. A.
and Selman, A. L., editors, Complexity Theory
Retrospective II, pages 179-195. Springer.

Li, M. and Vitanyi, P. (1997). An Introduction to
Kolmogorov Complexity and Its Applications (Second
Edition). Springer Verlag, New York.

Mackay, A. (1995). Generalised crystallography. Journal
of Molecular Structure (Theochem), 336:293-303.

Magnasco, M. O. (1997). Chemical kinetics is Turing
universal. Physical Review Letters, 78(6):1190-1193.

Markov, I. V. (1995). Crystal Growth for Beginners:
fundamentals of nucleation, crystal growth, and epitaxy.
World Scientific, Singapore.

Ptashne, M. (1992). A Genetic Switch, 2nd ed. Cell
Press & Blackwell.

Radin, C. (1991). Global order from local sources.
Bulletin of the AMS, 25(2):335-364.

Rado, T. (1962). On, non-computable functions. Bell
System Technical Journal, 41(3):877-884.

467

The Set Sq 2

12

10

8

6

1ooo 2000 3 0 0 0 ' ,ooo ooo oooo ,ooo so'
N

Figure 8: Ar t i s t ' s impress ion of the set Sq ~ of pa i rs (N,n) where n tiles p r o d u c e an N x N full square(b lack) .
K~A(N) is the lowest po in t in a column; the ver t ica l lines are due to the fact t h a t (N,n) E Sq 2 ~ (N ,n+ 1) E
Sq 2. B~A(n) is the r i gh tmos t poin t in a row.

Robinson, R. M. (1971). Undecidability and
nonperiodicity of tilings of the plane. Inventiones Math.,
12:177-209.

Rothemund, P. W. K. (2000). Using lateral capillary
forces to compute by self-assembly. Proceedings of the
National Academy of Sciences, 97:984-989.

Schectman, D., Blech, I., Gratias, D., and Cahn, J.
(1984). Metallic phase with long-range orientational
order and no translational symmetry. Phys. Rev. Lett.,
53:1951-1953.

Seeman, N. C. (1998). DNA nanotechnology: novel DNA
constructions. Annual Review of Biophysics and
Biomolecular Structure, 27:225-248.

Senechal, M. (1995). Quasicrystals and geometry.
Cambridge University Press, Cambridge.

Wang, H. (1961). Proving theorems by pattern
recognition. II. Bell System Technical Journal, 40:1-42.

Wang, H. (1963). Dominoes and the AEA case of the
decision problem. In Fox, J., editor, Mathematical
Theory of Automata, pages 23-55, Brooklyn, New York.
Polytechnic Press.

Winfree, E. (1996). On the computational power of
DNA annealing and ligation. In Lipton, R. J. and Baum,
E. B., editors, DNA Based Computers: DIMACS
Workshop, April 4, 1995, volume 27, pages 199-221,
Providence, tLI. American Mathematical Society.

Winfree, E. (preliminary, 1998). Simulations of
computing by self-assembly. In Kari, L., Rubin, H., and

Wood, D. H., editors, Proceedings of the 4 th DIMACS
Meeting on DNA Based Computers, held at the
University of Pennsylvania, June 16-19, 1998.

Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C.
(1998a). Design and self-assembly of two-dimensional
DNA crystals. Nature, 394:539-544.

Winfree, E., Yang, X., and Seeman, N. C. (1998b).
Universal computation via self-assembly of DNA: Some
theory and experiments. In Landweber, L. F. and Baum,
E. B., editors, DNA Based Computers H: DIMACS
Workshop, June 10-12, 1996, volume 44, Providence, RI.
American Mathematical Society.

468

