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ABSTRACT 
Molecular self-assembly gives rise to a great diversity of com- 
plex forms, from crystals and DNA helices to microtubules 
and holoenzymes. We study a formal model of pseudo- 
crystalline self-assembly, called the Tile Assembly Model, 
in which a tile may be added to the growing object when 
the total interaction strength with its neighbors exceeds a 
parameter 7-. This model has been shown to be Turing- 
universal. Thus, self-assembled objects can be studied from 
the point of view of computational complexity. Here, we de- 
fine the program size complexity of an NxN square to be the 
minimum number of distinct tiles required to self-assemble 
the square and no other objects. We study this complexity 
under the Tile Assembly Model and find a dramatic de- 
crease in complexity, from N 2 tiles to O(log N) tiles, as 7- 
is increased from 1 (where bonding is noncooperative) to 2 
(allowing cooperative bonding). Further, we find that the 
size of the largest square uniquely produced by a set of n 
tiles grows faster than any computable function. 

1. INTRODUCTION 
The spontaneous self-organization of complicated structures 
in natural systems has long fascinated physical scientists. 
They ask, "How should order be defined for such struc- 
tures?" and, "How are such structures generated?" It is 
now clear that  computational mechanisms play an impor- 
tant  role in understanding natural self-organization, at least 
in biological systems: algorithms control the generation of 
order. Research in DNA and molecular computation [Adle- 
man, 1994] has established that universal computation can 
be performed in biochemical systems, such as enzymatic 
(ribosome-like) modification or translation of a heteropoly- 
mer [Bennett, 1982; Kurtz et al., 1997], signal-transduction 
cascades [Hjelmfelt and Ross, 1995; Magnasco, 1997], and 
the self-assembly of protein or DNA into supramolecular 
structures [Radin, 1991; Winfree, 1996]. How widespread 
is influence of computational mechanisms in the generation 
of order - does it spread beyond the biological domain? 
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For most of this century, order in self-assembled chemical 
systems was thought to be well understood. Order was syn- 
onymous with periodic order - the order of crystals. The 
term crystal was reserved for materials characterized by one 
of the 230 space groups; everything else was described as 
disordered, amorphous, or glassy. The discovery of qua- 
sicrystalline materials[Schectman et al., 1984], with their 
"forbidden" five-fold symmetry shattered this monopoly but 
left a vacuum-what  is order if not periodic? One answer 
is to define crystal as '% structure with an essentially dis- 
crete diffraction pattern" [Senechal, 1995]. This patch for the 
existing framework includes quasicrystals, but  leaves little 
room for still more exotic structures that  may lurk undiscov- 
ered and excludes altogether biological materials that have 
complex order. These concerns have led the crystallogra- 
pher Alan Mackay to propose that  a "generalized crystal- 
lography" might define order[Mackay, 1995] using computer 
programs and cellular automata.  

Such an algorithmic framework for studying self-assembly 
is attractive for two reasons. First, because of Church's 
thesis, we expect that  computer programs will be able to 
capture all of the complex behaviour of self-assembly - no 
more complicated theory will be required. Second, such a 
framework will allow principles of computer science to be 
translated into statements about the physical world. For ex- 
ample, the self-assembly of DNA structures may be mapped 
naturally onto the languages of the Chomsky Hierarchy [Win- 
free et al., 1998b]. 

Here, we are interested in studying the self-assembly of 
objects from the point of view of computational complex- 
ity. Standard complexity measures in computer science are 
based on time, space, program size, and decidability. To 
study the time complexity of self-assembly, Leonard Adle- 
man has proposed a model that  emphasizes counting time 
steps during the self-assembly of a single copy of each of a fi- 
nite number of tiles into the final structure. He has used this 
model to analyze the self-assembly of N-long linear polymers 
[Adleman, 2000]. Adleman has also asked, "What is the 
complexity of generating an NxN square by self-assembly?" 
Here, we answer this question for program-size complexity 
under the Tile Assembly Model, where self-assembly occurs 
in the presence of an infinite supply of a finite number of 
tile types. 

The Tile Assembly Model is a formal model for the self- 
assembly of molecules, such as protein or DNA, constrained 
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to self-assemble on a square lattice; i.e. it is a model of 
pseudo-crystalline growth. The model is an extension of the 
theory of tiling by Wang tiles [Wang, 1961] to include a spe- 
cific mechanism for growth based on the physics of molec- 
ular self-assembly. A "program" consists of a finite set of 
unit  square tiles with colored sides (each available in an un- 
limited number of copies). Each color represents a type  of 
molecular binding domain, and thus each color has an asso- 
ciated "binding strength," which in our model must be an 
integer. Start ing from a chosen seed tile, growth occurs by 
addition of single tiles. (The growth of crystals by monomer 
addition, as opposed to merging of crystal fragments, is a 
common assumption in studies of crystal  growth [Markov, 
1995]; large defect-free crystals are not observed under phys- 
ical conditions where growth occurs by aggregation of small 
fragments.) Tiles bind a growing assembly only if their bind- 
ing interactions are of sufficient strength, as determined by 
the "temperature" parameter  7-. 

7- measures the "cooperativity" of the binding interac- 
tions. At 7- = 1, any binding interaction of s trength 1 or 
greater is strong enough, by itself, to hold a tile in place. 
This lack of cooperat ivi ty appears to go hand-in-hand with 
a lack of computat ional  power. At  7- = 2, however, single 
strength-1 interactions are too weak to hold a new tile in 
place; at least two strength-1 bonds must  cooperate for a 
tile to be added to an assembly. Under 7- -- 2 conditions 
it has been shown tha t  one-dimensional cellular au tomata  
can be simulated; hence 7- = 2 self-assembly is universal 
[Winfree, 1996]. I t  is interesting to observe tha t  cooperative 
effects play a major  role in gene regulation [Ptashne, 1992] 
and many other biological systems. 

Branched DNA molecules [Seeman, 1998] provide a di- 
rect physical motivation for the Tile Assembly Model. DNA 
double-crossover molecules, each bearing four "sticky ends" 
analogous to the four sides of a Wang tile, have been de- 
signed to self-assemble into a periodic two dimensional lat- 
tice [Winfree et al., 1998a]. The binding interactions be- 
tween double-crossover molecules may be redesigned by chang- 
ing the base sequence oof their sticky ends, thus allowing 
arbi t rary sets of molecular Wang tiles to be investigated in 
the laboratory. From a physically-based stochastic model of 
such a system, the Tile Assembly Model is obtained in the 
limit of strong binding domains and low monomer concen- 
trat ions [Winfree, 1998]. 

Macroscopic systems for 2D self-assembly based on lat- 
eral capillary forces [Hosokawa et al., 1996; Bowden et al., 
1997; Bowden et al., 1999; Rothemund,  2000] provide ad- 
ditional motivation for the Tile Assembly Model. In these 
systems millimeter-scale plastic tiles float at an interface be- 
tween hydrophobic and hydrophilic liquids (e.g., oil and wa- 
ter) and self-assemble into lattices as the system is agi ta ted 
on a shaker. Binding interactions between tiles are spec- 
ified by sequences of hydrophilic and hydrophobic patches 
applied to the edges of tiles; when sequences match, capil- 
lary forces mediate bonds between tiles. Tile sets with up to 
four distinct Wang tiles have been created by this method 
[Rothemund, 2000]. Analogies between such systems and 
molecular self-assembly are not yet quanti tat ive,  but  it has 
been observed tha t  the frequency of shaking acts similarly 
to temperature  and tha t  dimers bind cooperatively to lat- 

tices. Thus cooperative T = 2 assembly may be possible in 
a capillary force-based system. 

It  is straightforward to restrict  the  Tile Assembly Model 
to 1D, or to extend it to 3D. However, the 1D case allows 
no interesting computat ion to be performed; it is easy to 
see tha t  to produce a 1D line of N tiles requires N tiles for 
all 7- > 0. This result exactly parallels the decidability the 
1D tiling problem; the 2D tiling problem, inc contrast,  is 
undecidable [Berger, 1966]. At  the other extreme, it  seems 
unlikely tha t  3D allows for phenomena fundamental ly differ- 
ent from 2D, since universal computat ion is already possible 
in 2D. 

2. A MODEL OF SELF-ASSEMBLY 
Our discussion of the Tile Assembly Model will make use 
of the following definitions. N is the set of natural  num- 
bers {0, 1, 2 , . . .  }, Z = N U - N  is the  set of integers, and 
R is the set of real numbers. We will be working the two- 
dimensional grid of integer positions, Z x Z. The directions, 
79 = {N, E,  S, W}, will be used as functions from Z x Z t o  Z x 
Z: N(x,y)  = ( x , y + l ) ,  E(x,y) = ( x + l , y ) ,  S(x,y) = ( x , y -  
1), and W(x, y) = (x - 1, y). We say tha t  (x, y) and (x',  y ' )  
are neighbors if (x' ,  y ' )  E {N(x, y), E(x, y), S(x, y), W(x,  y)}. 
Note tha t  E -1 = W,  and N -1 = S. 

A p a r t i a l l y  o r d e r e d  se t  (poset) (S, <)  is a set S and 
a reflexive, transitive, ant isymmetr ic  relation <. If m < a 
a n d m < b a n d V c E  S , [ c < a a n d c < b ]  ==~ c < m ,  then 
m is called the m e e t  of a and b. I f a  < j and b_< j and 
Vc E S,[a < c a n d b  < c] ==~ j < c, t h e n j  is called the 
j o i n  of a and b. If all pairs a, b have both a meet and a join, 
then (S, <)  is called a l a t t i c e .  

A (Wang) t i l e  over ~ is a unit  square where each side 
is colored from the set ~ of b i n d i n g  d o m a i n s ;  formally, 
a tile t is a 4-tuple (aN,aE,aS,aW) E E 4 indicating the 
binding domains on the north, east, south, and west sides. 
For D E 79, we write bdD (t) to refer to the binding domain of 
the respective side of tile t. According to this definition, tiles 
may not be rotated; (aN,aE,aS,CrW) • (aW,alV,aE,aS). 
A special binding domain null represents a non-interaction, 
and the special tile empty = (null, null, null, null) is used 
to represent the absense of any other tile. 

The binding domains determine the interaction between 
tiles; that  is, when two tiles may be placed next to each 
other. A function g : E x E --+ F,  where null E E, is 
a s t r e n g t h  f u n c t i o n  if Va, a '  E E, g(a, a') = g(a', a) and 
g(null, a) = 0. Two tiles tha t  abut  on sides labelled a and a '  
bind with strength g(a, a'), as discussed below. Here, we will 
only consider g such tha t  mismatched sides have no inter- 
action strength and matching sides have positive strengths 
given in integral units, in which case the  strength of a side 

¢ 

labeled by a is ~(a) E N and g(a,a') = I -  gO(a) 
if (7 G ! 

otherwise. 

Let T be a set of tiles containing the special tile empty. 
A c o n f i g u r a t i o n  of T is a function A : Z x Z --+ T. We 
write (x, y) E A iff A(x, y) ¢ empty. For D E 79, we say the 
tiles at  (x, y) and D(x, y) b i n d  to each other with strength 

gA (x, y) = g(bdD( A(x, y) ), bdD-1 ( d( D(x, y)))). 
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F i g u r e  1: S i m u l a t i n g  a b i n a r y  c o u n t e r  w i t h  se l f -assembly .  At  left ,  a set  T of  s e v e n  t i les  is de p i c t e d .  I n  this  
f igure and all f igures  tha t  fo l low t h i c k  s ides  h a v e  s t r e n g t h  0, th in  s ides  h a v e  s t r e n g t h  1~ and  d o u b l e - l i n e d  s ides  
have  s t r e n g t h  2. A t  r igh t ,  a n  a s s e m b l y  p r o d u c e d  b y  T = (T, {S},g, 2) is shown.  T h e  a s s e m b l y  is no t  t e r m i n a l  
and a r r o w s  i n d i c a t e  p o s i t i o n s  at w h i c h  it m a y  grow.  

If gA(x,y) > 0, then the tiles m a k e  a b o n d .  If t is a 

tile, A~ ='v) is the configuration such that  A~='V)(x,y) = t 
and all other sites are empty, a(°'°) is called the e m p t y  ~ e r n p t y  

configuration. 

Addition of configurations A and B is defined by C = 
A + B where 

[A(x,y) 
C(=,Y) = I Boo(~,V) 

if B(x, y) = empty 
if A(x, y) = empty 
otherwise. 

Note that C is not necessarily a configuration, because C 
might contain oo values. 

Union of configurations A and B is defined by C = A 13 B 
where 

(A(x,y) 
C(=,Y) = l Boo(~,Y) 

if A(x, y) = B(x, y) or B(x, y) = empty 
if A(x, y) = B(x, y) or A(x, y) = empty 
otherwise. 

Note that  C is not a configuration iff there is a site (x, y) s.t 
A(x, y) and B(x, y) are distinct non-empty tiles. 

Intersection of configurations A and B is defined by C = 
A n B where 

A(x, y) 
C(z ,Y)= Iempty 

if A(x, y) = B(x, y) 
if A(x, y) = empty or B(x, y) = empty 
otherwise. 

Note that C is not a configuration iff there is a site (x, y) s.t 
A(x, y) and B(x, y) are distinct non-empty tiles. 

The free e n e r g y  of a configuration C is the sum of all 
interaction strengths between tiles (in contrast to standard 
usage in chemistry, favorable interactions are given by pos- 
itive numbers): 

1 c(c) = [ ~ ~ gZ(x, u). 
w , y E Z  D E : D  

The t e m p e r a t u r e  T gives the minimal interaction strength 
required to overcome thermal disruption. A configuration C 
is a T - s t a b l e  a s s e m b l y  if for all non-empty configurations 
A and B such that  C = A +  B, G(C) > G(A) + G(B) + T. 
That  is, a T-stable assembly cannot fall apart into two pieces 
without decreasing the total G by T or more. Note that for 
T > 0, a T-stable assembly must contain a single connected 
component. When T is understood, we simply say that C 
is an assembly. 

A t i le  s y s t e m  T is specified by the quadruple (T, S, g, 7-), 
where T is a finite set of tiles containing empty, S is a set 
of T-stable seed as sembl ie s ,  g is a strength function, and 
T > 0 is the temperature. In this paper, we consider only 
IS[ = 1, where S = A~ (°'°) for some seed t i le  s. 

Self-assembly is defined by a relation between configu- 
rations: A --rT B if there exists a tile t E T and a site 
(x,y) such that  B = A + A~ ='v) and B is T-stable. Since 

G(A~ ='v)) = O, G(B) > G(A) + T; i.e., a tile may be added 
to an assembly if the summed strength of its interactions 
with its neighbors exceeds a threshold set by the temper- 
ature. In particular, at T = 1, a tile may be added if it 
makes any bond to a neighbor, whereas at 7- = 2, to be 
added the tile must either make two weak bonds or a single 
strong bond. --~.~ is the reflexive transitive closure of --+T. 

461 



The tile system defines a partially ordered set, the pro-  
d u c e d  assemblies Prod(T) ,  where: 

Prod(T)  = {A s.t. 3s • S s.t. s -4~- A} 

and 

A < B iff A--+~ B. 

Another set, the t e r m i n a l  assemblies T e r m ( T ) ,  is defined 
as the maximal elements of Prod(T):  

T e r m ( T )  = {A • Prod(T)  s.t. l IB s.t. A < B}. 

The produced assemblies include intermediate products of 
the self-assembly process, whereas the terminal assemblies 
are just  the end products, and may be considered the "out- 
put." If 

A • Prod(T)  ~ 3B • T e r m ( T )  s.t. A - ~ -  B 

then T is said to be ha l t ab l e ,  in the sense that  every path 
of self-assembly can eventually terminate. If T is haltable 
and T e r m ( T )  is finite, T is said to be h a l t i n g  in the sense 
that every path of self-assembly does eventually terminate. 
A halting tile system u n i q u e l y  p r o d u c e s  C if T e r m ( T )  = 
{C}. Note that if a tile system uniquely produces C then 
Prod(T)  is a lattice: the join of A and B is A tA B, and the 
meet of A and B is max{C'  • Prod(T)  s.t. C' < (A N B)}. 
In general, if Prod(T)  is a lattice, we say that  T produces a 
u n i q u e  p a t t e r n  - T need not be halting nor even haltable. 

The universality of the Tile Assembly Model follows from 
an elaboration of the ideas used to prove the undecidabil- 
ity of the origin- and diagonal-constrained tiling problems 
[Wang, 1963; Winfree, 1998]. In this construction, the perime- 
ter of produced assemblies encodes the state of the Turing 
machine. Tile additions change the information exposed on 
the perimeter, effecting the state transitions. Thus, informa- 
tion computed as by a Turing machine can direct the growth 
of the assembly, and thus direct complex pattern formation. 

As an example, consider the tile system of Figure 1, con- 
sisting of four rule tiles with strength-1 binding domains, 
two border tiles with strength-1 and 2 binding domains, and 
one seed tile with strength-2 binding domains. At 7" -- 2, 
these tiles count in binary; the n th row above the origin rep- 
resents the binary integer n. This self-assembly "program" 
is analogous to an infinite loop - there are no terminal as- 
semblies. The reader is encouraged to start with the seed 
tile S and to verify that  a unique pat tern is produced: i.e. 
Prod(T)  is a lattice. Rule tiles may be added only if both 
their eastern and southern neighbors are already in place, 
and there is a unique rule tile for each possible pair of bind- 
ing domains the neighbors could present; furthermore, the 
property that only northern and western sides axe exposed 
in the assembly is preserved from step to step. For the same 
tile set at 7" = 1, the order of self-assembly is not similarly 
constrained; tiles may be added even when one of two neigh- 
bors is a mismatch, and thus many disordered assemblies are 
produced. 

3. COMPLEXITY OF SELF-ASSEMBLY 
In this section we will be measuring program-size complexity 
using asymptotic notation. All functions will be from N -4 
N. A function f (n)  is n o n - d e c r e a s i n g  iffVn, f (n )  <_ f ( n +  

1). A function f (n )  is u n b o u n d e d  iff Vc, 3n s.t. f (n)  > c. 
We say f (n)  = O(g(n) ) iff3c, no s.t. Vn > no, f (n)  <_ cg(n). 
We say f (n)  -- f~(g(n)) iff 3c, n0 s.t. Vn > no, f (n)  >_ cg(n). 
We assert proposition P(n)  i n f in i t e ly  o f t e n  iffVn0 > 0, 3 n >  
no s.t. P(n).  Define Oi.o. ("big-O infinitely often") such 
that  f (n)  = O,.o.(g(n)) iff 3c s.t. f (n )  <_ cg(n) infinitely 
often. We assert proposition P(n)  for a l m o s t  all  n iff 
i. I~1<-<-o s.t. P(-)}l = 1. Define f~ . . . .  ("big-D al- Zmno--*oo " ~ - no 
most always") such that  f (n )  = f~ . . . .  (g(n)) iff 3c s.t. f (n )  > 
c9(n) for almost all n. 

We can now formally describe the program-size complex- 
ity of an N x N  square. An assembly A is an N x N  s q u a r e  
if there exists a site (x0, yo) such that  (x, y) • A iff x >_ x0 
and x < x 0 + N  and y _> y0 and y < y o + N .  In other 
words, the choice of tiles may be arbitrary, so long as they're 
there. Square A is a ful l  s q u a r e  if for all (x, y), (x', y') • A 
such that  (x, y) and (x', y') are neighbors, (x, y) and (x', y') 
bind with non-zero strength. In other words; every adjacent 
pair of tiles must have non-zero interaction strength. We 
are interested in which squares can be self-assembled by tile 
systems: 

Sq T = {(N,n)  • N x N s.t. there exists a tile system 

W ---- (T, {s}, g, 7-), IT[ -- n + 1, 

and T uniquely produces an N x N  full square }. 

We define the program size complexity K~A(N ) of a square 
to be the minimum number of distinct non-empty tiles re- 
quired to uniquely produce the square - physically the num- 
ber of distinct types of molecules that  must be prepared. 

KTsA(N) = min{n s.t. ( g , n )  • Sq T} 

Our investigations rely on several constructions. We need 
an easy way to verify that  these constructions do indeed 
uniquely produce the target structure. For each construc- 
tion, the argument is an elaboration of the argument given 
for the binary counter tiles, only now an assembly may 
have more than one diagonal growth front. Specifically, the 
property that is preserved from step to step is that  the as- 
sembly is "stop-sign'-shaped: the orientations of the ex- 
posed sides along the (clockwise) perimeter are of the form 
N * { N , E } * E * { E , S } * S * { S , W } * W * { W , N } * .  These argu- 
ments rely on showing that  there is exactly one strength-2 
bond joining each row and each column. 

We begin by studying KTsA(N) for T = 1 and obtain the 
following theorem: 

THEOREM 1. K~A (N  ) - - N  2. 

PROOF. To show K~A(N)  <_ N 2, we construct N 2 tiles, 
one for each position in the square, with a unique strength-1 
binding domain for each adjacent pair of tiles as in Figure 2. 
To show K~A(IV ) >_ IV 2, suppose a tile set T with ]TI < N 2 
produces an NxN full square A (Figure 3). Then some tile i 
is present at two sites in A, say (xx,yl) and (x2, y2). Let L 
be the "L"-shaped (or possibly linear) assembly consisting 
only of the tiles at ( x l , y a ) . . .  ( x e , y l ) . . .  (x2,ye); let L 1 be 
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F i g u r e  2: F o r m a t i o n  o f  s q u a r e s  at  7" -- 1. ( a ) ) V  2 = 16 t i l e s  w i t h  u n i q u e  s i d e  l a b e l s  u n i q u e l y  p r o d u c e  a t e r m i n a l  
4 x 4 ful l  s q u a r e  at  7- = 1. (b)  2 N -  1 = 7 t i les  u n i q u e l y  p r o d u c e  a 4 x 4 s q u a r e  ( b u t  th i s  is n o t  a fu l l  s q u a r e  s ince  
t h i c k  s ides  h a v e  s t r e n g t h  0). E x c e p t  for t h e  s ides  l a b e l e d  w i t h  a c ircle ,  each  i n t e r a c t i n g  pa ir  o f  t i l e s  share  a 
u n i q u e  s i d e  l a b e l .  T h i s  c o m b - l i k e  c o n s t r u c t i o n  is c o n j e c t u r e d  to  b e  m i n i m a l  for N x N  s q u a r e s  a s s e m b l e d  at 
7 - = 1 .  

( x 2 , y z )  

_N- 

( x , , y , )  I L ~ ~ 

• . . L 2 
n 

F i g u r e  3: N o  7" = 1 t i l e  s y s t e m  w i t h  f e w e r  t h a n  N 2 t i l e s  can  u n i q u e l y  p r o d u c e  a n  N × N  square .  A ful l  N x N  
s q u a r e  w i t h  f ewer  t h a n  N 2 t i l e s  m u s t  h a v e  s o m e  t i l e  i p r e s e n t  at  t w o  s i tes .  C o n s i d e r  t h e  a s s e m b l y  R ( t h e  
w h i t e  t i l e s )  w h i c h  i n c l u d e s  an  a s s e m b l y  L ( b o u n d e d  b y  t h e  t i l e s  i ) ,  t h e  s e e d  t i l e  S ,  a n d  a t i l e  t h a t  c o n n e c t s  
t h e  s e e d  t i le  to  L. R can  b e  e x t e n d e d  i n d e f i n i t e l y  w i t h  t h e  a d d i t i o n  o f  t r a n s l a t e d  s e g m e n t s  o f  L (e.g. L~-I 
s h o w n  in gray ) .  

the  assembly such tha t  L ] + ( x 2 , y 2 )  -~ L; let L 2 be the  
assembly such tha t  (x l ,  y l )  + L 2 = L; let L~(x, y) = Lk(x  + 
n * (xz - x l ) ,  y + n * (y~ - Yl)) be a t rans la ted  version of L ~ 
for k = 1, 2; and let R consist of L, S, and the  fewest tiles 
in A required to connect  S to L. Because R is conta ined in 
A and A is a full square,  all adjacent  pairs of tiles in teract  
on a s t rength- (a t  least)-I  side, and therefore S --+~- R. At  
least one of a 1 2 2 { L - l ,  L+x, say be added  to L - a ,  L+I} ,  L~, can 
R,  result ing in a larger assembly also p roduced  by T .  This  
can be cont inued indefinitely: if  s = +1 then  for all n, 

n r R + Y]~=+x L~ is in Prod(T);  if s = - 1  then  for all n, R + 
- - 1  r ~ i = - n  Li is in Prod(T) .  This  contradic ts  the assumpt ion  

tha t  T is hal t ing and te rmina tes  in N × N  full squares. • 

At  7- = 2 the  s i tuat ion is markedly  different. 

THEOREM 2. K ~ A ( N  ) = O(N) .  

PROOF. Figure  4 shows two const ruct ions  for an N x N  full 
square using 2 N  (Figure 4a) and N + 3 (Figure 4b) tiles 
respectively. Self-assembly from the seed tile 1 proceeds ini- 
tially by single s t rength-2 interact ions creat ing the  borders  
with the  numbered  tiles. As the  border  grows, two coop- 
erat ive s t rength-1 in teract ions  allow the  blank tile to fill in 

and comple te  the  square.  For the  tiles at  the  right,  the  A 
and B tiles enter  a new co lumn by thei r  s t rength-2 side, 
thus allowing the rest of the  co lumn to be filled wi th  blanks. 
The  N × N  full square  can be  easily verified to be a terminal  
assembly. • 

This  is only the  beginning.  The  cons t ruc t ion  in Figure 4b 
can be combined with  a f ixed-width  version of the  binary 
counter  of F igure  1 to ob ta in  a set of tiles t ha t  produce the  
NxN full square  by count ing  in b inary  instead of by counting 
in unary. 

THEOREM 3. K 2 A ( N ) =  O ( l o g N ) .  

PROOF. Figure  5 cons t ruc ts  an N × N  full square using 
n + 22 tiles, where n = [ l o g N ] .  n + 2 tiles, including 
the  seed tile, p roduce  an (n  - 1) × (n - 1) square as in 
the  previous construct .  Addit ional ly ,  the  n - 1 tiles in the 
seed row have upper  sides encoding the  bits of the  integer 
c = 1 + 2 "~-1 - (N  - n)/2,  the  init ial  value of the  counter. 
We must  use a f ixed-width version of  the  counter  tiles of 
Figure  1; this requires a special  set of tiles for the  leftmost 
and r igh tmos t  columns of bits. The  counter  counts  from c 
to 2 n - l ,  using two rows for each integer.  In order to detect  
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F i g u r e  5: F o r m a t i o n  o f  N x N  s q u a r e  u s i n g  O(log N)  t i l e s .  C o n s t r u c t i o n  s t a r t s  w i t h  a n  n - 1 x n - 1 s q u a r e  as  
in  F i g u r e  4b .  H e r e  N = 52, n = 6 a n d  28 t i l e s  a r e  u s e d .  T h e  c o n s t r u c t i o n  i l l u s t r a t e s  t h e  c a s e  fo r  e v e n  N - n; 

t h e  f i r s t  r o w  a b o v e  t h e  s e e d  r o w  is a c o p y  r o w  fo r  o d d  N - n. 

when the counter  has finished, we use a l te rna t ing  rows to in- 
crement  the counter  from right  to left, then  to copy the  the  
bits from left to r ight  unless the  lef tmost  bit  jus t  rolled over 
from 1 to 0. In  the  la t te r  case, the  t i le presents  a s t rength-2  
side wi th  a label not  found on any other  tiles, thus  hal t-  
ing the  counter.  (The  s t rength-2  side will be used in our 
next  construct ion;  here, any s t rength  would  suffice.) The re  
is a special t i le for the  r igh tmos t  bit  in the  first increment  
row above the  seed row. This  ti le contains  a s t rength-2  side 
to ini t iate  the  a -b  diagonal ,  thus  filling in the  rest of the  
square. Overall ,  the  counter  requires  18 tiles; the  seed row 
requires n - 1 tiles; the  two diagonals require  4 tiles; and 
there  are two blank tiles. • 

But  we can do much bet te r :  by recursively i te ra t ing  the  
above const ruct ion  one can produce  N x N  squares wi th  

2 2 2 . . . 2  d e f  
N >  = 2 * * n  

n t i m e s  

using only O(n) tiles. Define log* N as the  least  n such tha t  

2 * * n > N .  

THEOREM 4. K~A(.N ) =- Oi.o.(log* N ) .  

PROOF. Our  proof  is by induct ion.  Let  S '~ refer to a tile 
sys tem conta ining fewer than  22n tiles ( including the  a,  b,  
and blank tiles) t h a t  uniquely  produces  an N×N full square 

such t h a t  

• N >  2 * * n .  

• All binding domains  on the  left and b o t t o m  are of 

s t rength  1 or 0. 

• All binding domains  on the  r ight  have the  s t rength-1 
blank label. 

• The  binding domains  on the  upper  side conform to 
the  pa t t e rn  xy*zb*a where x is a s t rength-2 binding 
domain  tha t  occurs  nowhere  else, and y, z, b, and a are 
dis t inct  s t rength-1 binding domains .  

We show tha t  S ~ exists for all n. The  base case n = 1 is 
tr ivial .  The  induct ive  s tep is i l lus t ra ted  in Figure  6. First ,  
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F i g u r e  6: F o r m a t i o n  o f  N×N s q u a r e  u s i n g  Oi.o.(log* N)  t i l e s .  G i v e n  a s e t  o f  t i l e s  S n t h a t  p r o d u c e  a n  N×N fu l l  
s q u a r e  t h a t  s a t i s f i e s  t h e  r e c u r r e n c e ~  t h e  a d d i t i o n  o f  22 n e w  t i l e s  r e s u l t s  in  S n+l  a n d  p r o d u c e s  a ( N  + 2 x 
2/7) × i N + 2 :x: 2 N) fu l l  s q u a r e .  N e w  s i d e  l a b e l s  ( w i t h  d o u b l e d  s y m b o l s )  p r e v e n t  c o u n t e r  t i l e s  f r o m  S n f r o m  
i n c o r p o r a t i n g  in  t h e  S '~+1 c o u n t e r .  

there  are 5 tiles that ,  in i t ia ted by x, produce  an initial 
s tr ing of O's for a new f ixed-width counter,  and provide a 
s t rength-2 side for a new a - b  diagonal. T h e n  there  are 16 
tiles equivalent  to the  counter  tiles in Theorem 3 but  us- 
ing new side labels; the  counter  counts  to 2 N. The  diago- 
nal  fills in the  rest of the  square,  now with  sides of length  
N + 2 × 2 N > 2 jv > 2 • *(n + 1). Therefore  S '~ exists for all 
n, and for those n, 

22 log* N _> 22n > K~A (N). 

log* N is an exceedingly slowly growing function; the  above 
const ruct ion shows tha t  very large squares can be assembled 
with  a very small  number  of tiles. But  we can do much bet-  
ter  yet! By embedding  the  s imulat ion of a Turing machine  
in the growth of a square we show that :  

THEOREM 5. K~AiN ) = O~.o.(f(N)) for f (N)  any non- 
decreasing unbounded computable function. 

PROOF. Our  proof  relies on a self-assembly version of the  
Busy Beaver  problem [Rado, 1962]. Define: 

BTSAi ~) -~ m a x { N  s.t. (N,n) • SqT}. 

To show Theorem 5, we first show 

B~A(n) = f2(F(n)) for any computab le  funct ion F(n). 
(1) 

Theorem 5 follows from (1) by contradic t ion:  if false, then 
there  exists a computab le ,  non-decreasing,  unbounded  func- 
tion f (N)  such tha t  3N0 s.t. VN > No, K~A(N) > f iN) .  
Let F(n) = m a x { N  s.t. N = 0 or f (N)  < n}; this is a com- 
putab le  function.  Note  tha t  B~A(n) > F(n) requires t ha t  
3 ( N , n )  E Sq ~ s.t. N > F(n) and therefore  f (  N ) > n and 
K~A(N) < n. For N > No this contradic ts  K~A(N ) > 
f (N) .  Therefore,  for all n > f(No), B~A(n) < F(n), con- 
t rad ic t ing  (1) and establ ishing Theo rem 5. 

Recall  t ha t  Bt(m) = ~2(F'(m)) for any computab le  func- 
t ion F'(m) where: 

Bt(m) =max{t s.t. m = qs and there  exists a 

q-state,  s -symbol  Tur ing  machine  tha t  

hal ts  on a blanl~ t ape  in t steps} 

Let M be a q-state,  s -symbol  Tur ing machine  tha t  halts  
on a blank t ape  in Bt(m) steps, where  m = qs. We will con- 
s t ruct  a square  of size N = 2Bt(m)+3 using n = 12qs+4s+9 
tiles by s imula t ing  M wi th  tiles, s imilar  to the  construc-  
t ion of Robinson  [Robinson, 1971]. Given any n > 41, we 

I n - 1 7 [  and ~ n n  - ~  q n s n ;  o u r  con- will use s ,  = 2, q~ = L 24 J, 
s t ruct ion will need only 12qns~ + 4s~ + 9 < n tiles. Then  
B~A(n) >_ 2Bt(m~) + 3 = f~(F'(m~)). For any computab le  
funct ion F ( n ) ,  we can find ano ther  computab le  function 
F'(m) s.t. Vn, F'(m~) > F(n). Therefore,  we arrive at 

i l ) .  

We cons t ruc t  the  square  by growing four identical sim- 
ulat ions of the  Tur ing machine  M ,  one from each side of 
a seed tile. Each s imula t ion  stays wi th in  one of the  four 
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The three-state Busy 

A0 --  B1R 

B0 ~ A 1 L  

CO - - B 1 L  

for qs--q 's 'L make read tiles 

for qs~q ' s 'R  make read tiles 

4 x left read tiles 

4 x right read tiles 

4 x write tiles 

4 x symbol tiles 

seed and initial tiles 

diagonal tiles 

Beaver machine: 

A1 - - C 1 L  

B1 - - B 1 R  

C 1 --  halt 

~ [ ~  and write t i l e ~  

~ ]  [ ~  and write tile [ - ~  

_ 2  _ 

- - - e  ............. - ~ - - -  J S 

F i g u r e  T: F o r m a t i o n  of  a n  NxN s q u a r e  b y  g r o w i n g  four  i d e n t i c a l  s i m u l a t i o n s  of  a g i ve n  T u r i n g  m a c h i n e .  T h e  
B u s y  B e a v e r  m a c h i n e  s i m u l a t e d  he re  has  t h r e e  s t a t e s  (q0 = A, ql = B,q2 = C) a n d  two s y m b o l s  (so = 0, sl = 1). 
N o t e  t h a t  R d e n o t e s  r igh t ,  L d e n o t e s  left ,  a n d  "4x"  i n d i c a t e s  t h a t  four  v a r i a t i o n s  of  a t i le  a re  used ,  one  for 

each  compass  d i r ec t ion .  

regions bounded by the diagonals of the square; when M 
halts, the square is complete. We require 4 tiles to create 
the four "half-diagonals" defining these boundaries between 
simulations. For each simulation we require 1 "initial state" 
that  matches the seed tile, s symbol tiles, qs write tiles, and 
2qs read tiles, giving a total of 3qs + s + 1 tiles per sim- 
ulation. We describe these tiles for the TM simulation to 
the north of the seed tile. Recall that  a tile is a 4-tuple 
(aN, aE, as ,  aw)  representing the north, east, south, and 
west binding domains. Binding domain strengths are 1 un- 
less noted. Each of the four simulations has its own version 
of the side labels described, distinguished by superscripts 
(we omit the superscript N from the description of north- 
facing simulation below). The symbol tile for symbol s is 
(as, a~, as,ae) ,  where a8 is a binding domain representing 
the symbol s and ae is a binding domain indicating that  
the TM head is not present. For each state-symbol pair 
(q, s), the left read tile (aq,s, ae, as, aq) and the right read 
tile (aq,~, aq, as, ae) represent the TM head in state q enter- 
ing a tape cell (from the left or from the right) and reading 
the symbol s. The binding domains aq,~ have strength 2; 
this is necessary for the TM head to enter the next row of 
the simulation. The write tiles, representing the action the 
TM head takes, depend on the form of the state transition 
table entry. For each entry of the form (q,s) -+ (q ' , s ' ,L)  
there is a write tile (a~,, ae, aq,~, aq,); for each entry of the 
form (q, s) --+ (q', s', R) there is a write tile (a~,, aq,, aq,s, ae); 
for each entry of the form (q, s) --~ halt there is a write tile 
(ahalt,  ae,  aq,s, O'e ). 

To start the Turing Machine in state qo reading the blank 
symbol so, the initial tile for the northern simulation is 
I N  = (aqo,so,ae,as,a~), where as is a strength-2 bind- 
ing domain. The initial tiles for all four simulations bind 

(as , as ,  a s, a w )  • The four diagonal to the seed tile S = N E 
N N W W N E E tiles, N W  = (aso,ae ,ae ,aso), N E  = (Crso,asoae ,aN, ) ,  

E E S S ( a Y , a S ,  S a Wo) pad S E  (ae , aso, a~o, ae ), and S W  
the tapes with extra cells containing the blank symbol so 
and delimit the four simulations. • 

Theorem 4 gives the construction of infinite number of 
very large squares made from a very small number of tile 
types. Theorem 5 implies that,  for an infinite set of N, the 
number of tiles required to assemble an NxN square can be 
made "arbitrarily small". How well can one do in general? 
Unfortunately, extremely concise self-assembly programs are 
not common. Then we show: 

THEOREM 6. K ~ A ( N  ) . . . . . . .  ~loglogN," 

PROOF. The Kolmogorov complexity of an integer N with 
respect to a universal Turing machine U is 

K u ( g )  = min IP] s.t. U ( p ) - - - ~ N  

where # N  is the binary string representing N. (See [Li 
and Vitanyi, 1997] for results on Kolmogorov complexity.) 

1 A 
Recall that  K u ( N )  < [logN] - A for at most ~ of all 
N, by the pidgeonhole principle. Therefore, for any e > 0, 
Ku (N) > (1 - e) log N for almost all N. 

There exists a Turing machine SA2 (with program pSA2) 
that,  given a binary description of a 7- = 2 tile system, sim- 
ulates their self-assembly, making an arbitrary choice when 
multiple tile additions are possible, and returns the maximal 
dimension of the resulting assembly if self-assembly termi- 
nates. A tile system T with n tiles can be described by dw 
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containing f(n) = 4n [log 3n] bits; each of 4n sides may have 
a strength in {0, 1, 2}, and non-zero-strength labels may be 
defined by the first tile (in some arbitrary order) with the 

• same tile on the opposite side. Thus if tile system T uniquely 
produces an NxN full square, then p : PsA2dT will return 
# N  when input to U. Therefore, for almost all N, 

(1 - e) l o g N  < Kv(N) < [PSA2[ + f(K2A(N)) 

< C1 + C2K~A(N)[C3 + loglog N], 

where we used K~A(N) : O(log N) from Theorem 3. The 
final result follows from simple algebra. • 

In other words, a Kolmogorov-random integer N cannot 
be compressed by the self-assembly model. 

4. DISCUSSION 
Ti les  or  labels.  This paper discussed the program-size 
complexity of self-assembled squares, where complexity was 
measure by the number of distinct tile types involved. An 
alternative complexity measure is the minimum number of 
distinct side labels required to uniquely produce the object. 
The number of labels will be relevant in a physical system 
where the number of distinct binding interactions is limited 
due to imperfect specificity of binding. Do both measures 
give asymptotically similar results? 

K o l m o g o r o v  complex i ty .  A main conclusion of this 
paper is that  the program-size complexity of self-assembled 
objects (at 7- = 2) looks remarkably similar to the usual 
program-size complexity with respect to Turing machines. 
This is hardly surprising, since self-assembly at T = 2 can 
simulate Turing machines. However, Figure 8 makes K~A 
look perhaps more similar to K~] than it ought to: K~A is 
computable due to the monotonic nature of self-assembly 
growth (each tile set can be simulated in turn until it halts 
or exceeds an N x N  region), whereas of course Ku is not 
computable. 

Dis in tegra t ion .  The difference between K~A and Ku 
comes from the monotonic nature of self-assembly: the grow- 
ing object always gets bigger, so "temporary results" cannot 
be larger than the object itself. A simple device circumvents 
this difficulty: select a subset D C T; after self-assembly is 
complete, the tiles in D are destroyed in all assemblies in 
Term(T), and the resulting assemblies are considered the 
output of the computation. A molecular implementation 
might make the tiles in D out of RNA, while the tiles in 
T \ D are DNA; then, an RNase enzyme can be used to 
destroy all tiles in D. 

Let / ~ A  be the full square complexity for the model with 
disintegration. The ability of T : 2 self-assembly to sim- 
ulate Turing machines can now be used to make squares: 
given a Turing machine program p such that U(p) = #N,  
we generate C + IPl tiles (all in D) that simulate p and ex- 
pand the result into a template of length N. Now a few 
final tiles (not in D) complete the square; only this square 
will survive disintegration. Thus / ~ A  < Ku(N) + C; we 
already know Kv (N) = O(I~2A (N) log log N). That  is, the 
only difference is that  /£~A measures the number of tiles 
instead of the number of bits required to specify the tiles. 
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