
THE ART OFCOMPUTER PROGRAMMINGVOLUME 4 PRE-FASCICLE 0C

A DRAFT OF SECTION 7.1.2:BOOLEAN EVALUATION

DONALD E. KNUTH Stanford University

ADDISON{WESLEY 677

-1

Internet page http://www-s-faulty.stanford.edu/~knuth/taop.html ontainsurrent information about this book and related books.See also http://www-s-faulty.stanford.edu/~knuth/sgb.html for informationabout The Stanford GraphBase, inluding downloadable software for dealing withthe graphs used in many of the examples in Chapter 7.See also http://www-s-faulty.stanford.edu/~knuth/mmixware.html for down-loadable software to simulate the MMIX omputer.Copyright 2006 by Addison{WesleyAll rights reserved. No part of this publiation may be reprodued, stored in a retrievalsystem, or transmitted, in any form, or by any means, eletroni, mehanial, photo-opying, reording, or otherwise, without the prior onsent of the publisher, exeptthat the oÆial eletroni �le may be used to print single opies for personal (notommerial) use.Zeroth printing (revision 1), 24 Marh 2006

-2

PREFACE
Your mind should break free of ustom, furiously seizing the bitand reklessly hoosing its own path,where you would fear to asend by yourself.| SENECA, De Tranquillitate Animi (. 50)

This booklet ontains draft material that I'm irulating to experts in the�eld, in hopes that they an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet forourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet reahed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manusripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those arefully-heked volumes,alas, were subsequently found to ontain thousands of mistakes.Given this aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be disouraged from reading the material arefully.I did try to make the text both interesting and authoritative, as far as it goes.But the �eld is so vast, I annot hope to have surrounded it enough to orral itompletely. Therefore I beg you to let me know about any de�ienies that youdisover.To put the material in ontext, this pre-fasile ontains Setion 7.1.2 of along, long hapter on ombinatorial algorithms. Chapter 7 will eventually �llat least three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'mable to remain healthy. It will begin with a short review of graph theory, withemphasis on some highlights of signi�ant graphs in the Stanford GraphBase,from whih I will be drawing many examples. Then omes Setion 7.1: BooleanTehniques and Triks, beginning with basi material in Setion 7.1.1 (see pre-fasile 0b). Setion 7.1.2, whih you're about to read here, is onerned withthe study of eÆient Boolean funtion evaluation. Setion 7.1.3 will deal withtriks and tehniques of bitwise alulation; and Setion 7.1.4 will disuss therepresentation of Boolean funtions.The next setion, 7.2, is about generating all possibilities, and it beginswith Setion 7.2.1: Generating Basi Combinatorial Patterns. Fasiles for thissetion have already appeared on the Web and/or in print. Setion 7.2.2 willdeal with baktraking in general. And so it will go on, if all goes well; an outlineof the entire Chapter 7 as urrently envisaged appears on the taop webpagethat is ited on page ii. iii

-3

iv PREFACEThe topi of Boolean funtions and bit manipulation an of ourse be in-terpreted so broadly that it enompasses the entire subjet of omputer pro-gramming. My original title for Setion 7.1|\Bit Fiddling"|was muh moremodest; I deided, however, that those words were a bit too low-brow. The realgoal of this fasile is to fous on onepts that appear at the lowest levels, onwhih we an eret signi�ant superstrutures. And even these apparently lowlynotions turn out to be surprisingly rih, with expliit ties to Setions 2.3.4.4,4.3.1, 4.6.4, and 5.3.4 of the �rst three volumes. I strongly believe in buildingup a �rm foundation, so I have disussed Boolean topis muh more thoroughlythan I will be able to do with material that is newer or less basi. After typingthe manusript I was astonished to disover that I had ome up with 87 exerises,even though|believe it or not| I had to eliminate quite a lot of the interestingmaterial that appears in my �les.My notes on ombinatorial algorithms have been aumulating for morethan forty years, so I fear that in several respets my knowledge is woefullybehind the times. Please look, for example, at the exerises that I've lassed asresearh problems (rated with diÆulty level 46 or higher), namely exerises 21and 24; I've also impliitly mentioned or posed additional unsolved questions inthe answers to exerises 17, 40, 55, 61, 63, 70, and 80. Are those problems stillopen? Please let me know if you know of a solution to any of these intriguingquestions. And of ourse if no solution is known today but you do make progresson any of them in the future, I hope you'll let me know.I urgently need your help also with respet to some exerises that I madeup as I was preparing this material. I ertainly don't like to reeive redit forthings that have already been published by others, and most of these results arequite natural \fruits" that were just waiting to be \pluked." Therefore pleasetell me if you know who deserves to be redited, with respet to the ideas foundin exerises 11, 14, 16, 27, 29, 30, 34, and 40, and/or the answer to exerise 38.Furthermore I've ited unpublished results of Frank Liang, Mike Paterson, andRih Shroeppel; do you know of any related publiations?The text presents an approah to synthesis based on so-alled \footprints"of funtions, whih I haven't seen in the literature. Is this method new, or did Ioverlook some relevant papers?I shall happily pay a �nder's fee of $2.56 for eah error in this draft when it is�rst reported to me, whether that error be typographial, tehnial, or historial.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/ eah. (Furthermore, ifyou �nd a better solution to an exerise, I'll atually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referenes to yet-unwritten material sometimes appear as `00'; thisimpossible value is a plaeholder for the atual numbers to be supplied later.Happy reading!Stanford, California D. E. K.14 Marh 2006

-4

PREFACE vHelpful hints. Readers of Setion 7.1.2 should ideally have already read (orat least skimmed) Setion 7.1.1. In partiular, they should not be shoked orpuzzled by notations suh asi) �(x1x2 : : : xn) or �((x1x2 : : : xn)2) for the sum x1 + x2 + � � �+ xn;ii) Sk1k2:::kt(x) for the symmetri funtion that is true when �x = k1 or k2 or: : : or kt;iii) hx1x2 : : : x2k�1i for the threshold funtion S�k that equals the median valueof fx1; x2; : : : ; x2k�1g (whih is also the majority value).Atually I used the notation Sk1;k2;:::;kt for symmetri funtions in Setion 7.1.1;but for Setion 7.1.2 I've deided to drop the ommas between k's, at least insimple ases, beause they just lutter things up in the present ontext.
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I thank the Stanford University InfoLab and Sun Mirosystems Laboratoriesfor generously donating many hours of omputer time on large, fast mahines,thereby allowing me to investigate the Boolean funtions of �ve variables.

-5

0 COMBINATORIAL ALGORITHMS (F0C)

By and large the minimization of swithing omponentsoutweighs all other engineering onsiderationsin designing eonomial logi iruits.| H. A. CURTIS, A New Approah to the Design of Swithing Ciruits (1962)He must be a great alulator indeed who sueeds.Simplify, simplify.| HENRY D. THOREAU, Walden; or, Life in the Woods (1854)7.1.2. Boolean EvaluationOur next goal is to study the eÆient evaluation of Boolean funtions, muh aswe studied the evaluation of polynomials in Setion 4.6.4. One natural way toinvestigate this topi is to onsider hains of basi operations, analogous to thepolynomial hains disussed in that setion.A Boolean hain, for funtions of n variables (x1; : : : ; xn), is a sequene(xn+1; : : : ; xn+r) with the property that eah step ombines two of the preedingsteps: xi = xj(i) Æi xk(i); for n+ 1 � i � n+ r; (1)where 1 � j(i) < i and 1 � k(i) < i, and where Æi is one of the sixteen binaryoperators of Table 7.1.1{1. For example, when n = 3 the two hainsx4 = x1 ^ x2x5 = �x1 ^ x3x6 = x4 _ x5 and x4 = x2 � x3x5 = x1 ^ x4x6 = x3 � x5 (2)both evaluate the \mux" or \if-then-else" funtion x6 = (x1? x2:x3), whih takesthe value x2 or x3 depending on whether x1 is 1 (true) or 0 (false).

0

7.1.2 BOOLEAN EVALUATION 1(Notie that the left-hand example in (2) uses the simpli�ed notation `x5 =�x1 ^ x3' to speify the NOT-BUT operation, instead of the form `x5 = x1 � x3'that appears in Table 7.1.1{1. The main point is that, regardless of notation,every step of a Boolean hain is a Boolean ombination of two prior results.)Boolean hains orrespond naturally to eletroni iruits, with eah stepin the hain orresponding to a \gate" that has two inputs and one output.Eletrial engineers traditionally represent the Boolean hains of (2) by iruitdiagrams suh as123 and 123 : (3)They need to design eonomial iruits that are subjet to various tehnologialonstraints; for example, some gates might be more expensive than others, someoutputs might need to be ampli�ed if reused, the layout might need to be planaror nearly so, some paths might need to be short. But our hief onern in thisbook is software, not hardware, so we don't have to worry about suh things.For our purposes, all gates have equal ost, and all outputs an be reused asoften as desired. (Jargonwise, our Boolean hains boil down to iruits in whihall gates have fan-in 2 and unlimited fan-out.)Furthermore we shall depit Boolean hains as binary trees suh as_^ _1 2 1 3 and +^+3 1 2 3 (4)
instead of using iruit diagrams like (3). Suh binary trees will have overlappingsubtrees when intermediate steps of the hain are used more than one. Everyinternal node is labeled with a binary operator; external nodes are labeled withan integer k, representing the variable xk. The label ` _ ' in the left tree of (4)stands for the NOT-BUT operator, sine �x^y = [x<y ℄; similarly, the BUT-NOToperator, x ^ �y, an be represented by the node label ` _ '.Several di�erent Boolean hains might have the same tree diagram. Forexample, the left-hand tree of (4) also represents the hainx4 = �x1 ^ x3; x5 = x1 ^ x2; x6 = x5 _ x4:Any topologial sorting of the tree nodes yields an equivalent hain.Given a Boolean funtion f of n variables, we often want to �nd a Booleanhain suh that xn+r = f(x1; : : : ; xn), where r is as small as possible. Theombinational omplexity C(f) of a funtion f is the length of the shortest hainthat omputes it. To save exess verbiage, we will simply all C(f) the \ostof f ." The mux funtion in our examples above has ost 3, beause one an showby exhaustive trials that it an't be produed by any Boolean hain of length 2.The DNF and CNF representations of f , whih we studied in Setion 7.1.1,rarely tell us muh about C(f), sine substantially more eÆient shemes of

1

2 COMBINATORIAL ALGORITHMS (F0C) 7.1.2alulation are usually possible. For example, in the disussion following 7.1.1{(30) we found that the more-or-less random funtion of four variables whosetruth table is 1100 1001 0000 1111 has no DNF expression shorter than(�x1 ^ �x2 ^ �x3) _ (�x1 ^ �x3 ^ �x4) _ (x2 ^ x3 ^ x4) _ (x1 ^ x2): (5)This formula orresponds to a Boolean hain of 10 steps. But that funtion analso be expressed more leverly as�((x2 ^ �x4)� �x3) ^ �x1�� x2; (6)so its omplexity is at most 4.How an nonobvious formulas like (6) be disovered? We will see that aomputer an �nd the best hains for funtions of four variables without doing anenormous amount of work. Still, the results an be quite startling, even for peoplewho have had onsiderable experiene with Boolean algebra. Typial examplesof this phenomenon an be seen in Fig. 5, whih illustrates the four-variablefuntions that are perhaps of greatest general interest, namely the funtionsthat are symmetri under all permutations of their variables.Consider, for example, the funtion S2(x1; x2; x3; x4), for whih we havex1 0000 0000 1111 1111x2 0000 1111 0000 1111x3 0011 0011 0011 0011x4 0101 0101 0101 0101x5 = x1 � x3 0011 0011 1100 1100x6 = x1 � x2 0000 1111 1111 0000x7 = x3 � x4 0110 0110 0110 0110x8 = x5 _ x6 0011 1111 1111 1100x9 = x6 � x7 0110 1001 1001 0110x10 = x8 ^ �x9 0001 0110 0110 1000
(7)

aording to Fig. 5. Truth tables are shown here so that we an easily verifyeah step of the alulation. Step x8 yields a funtion that is true wheneverx1 6= x2 or x1 6= x3; and x9 = x1�x2�x3�x4 is the parity funtion (x1+x2+x3+x4) mod 2. Therefore the �nal result, x10, is true preisely when exatly twoof fx1; x2; x3; x4g are 1; these are the ases that satisfy x8 and have even parity.Several of the other omputational shemes of Fig. 5 an also be justi�edintuitively. But some of the hains, like the one for S14, are quite amazing.Notie that the intermediate result x6 is used twie in (7). In fat, no six-step hain for the funtion S2(x1; x2; x3; x4) is possible without making doubleuse of some intermediate subexpression; the shortest algebrai formulas for S2,inluding nie symmetrial ones like�(x1 ^ x2) _ (x3 ^ x4)�� �(x1 _ x2) ^ (x3 _ x4)�; (8)all have ost 7. But Fig. 5 shows that the other symmetri funtions of four vari-ables an all be evaluated optimally via \pure" binary trees, without overlappingsubtrees exept at external nodes (whih represent the variables).

2

7.1.2 BOOLEAN EVALUATION 3
^^ ^1 2 3 4S4 = +^ ^^ _ _ ^1 2 3 4 1 2 3 4

S3 = ^_ ^^ ^ _ _1 2 3 4 1 2 3 4
S34 =

__ ++ + +1 3 1 2 3 4
S2 = __ +_ + +31 2 1 2 3 4

S24 = +_ _+ ++ 1 23 3 41 2
S23 = __ ^^ ^ _ _1 2 3 4 1 2 3 4

S234 =
+_ __ ^ ^ _1 2 3 4 1 2 3 4

S1 = +^ __ _ + +1 2 3 4 1 2 3 4
S14 = ++ +1 2 3 4S13 = _^ +^ + +31 2 1 2 3 4

S134 =
+_ ^+ ++ 1 23 3 41 2

S12 = +_ _^ ^ + +1 2 3 4 1 2 3 4
S124 = __ ++ +1 2 3 4 1 3S123 = __ _1 2 3 4S1234 =

Fig. 5. Optimum Boolean hains for thesymmetri funtions of four variables.In general, if f(x1; : : : ; xn) is any Boolean funtion, we say that its lengthL(f) is the number of binary operators in the shortest formula for f . ObviouslyL(f) � C(f); and we an easily verify that L(f) = C(f) whenever n � 3, byonsidering the fourteen basi types of 3-variable funtions in 7.1.1{(95). But wehave just seen that L(S2) = 7 exeeds C(S2) = 6 when n = 4, and in fat L(f)is almost always substantially larger than C(f) when n is large (see exerise 49).The depth D(f) of a Boolean funtion f is another important measure of itsinherent omplexity: We say that the depth of a Boolean hain is the length of thelongest downward path in its tree diagram, and D(f) is the minimum ahievabledepth when all Boolean hains for f are onsidered. All of the hains illustratedin Fig. 5 have not only the minimum ost but also the minimum depth|exeptin the ases S23 and S12, where we annot simultaneously ahieve ost 6 anddepth 3. The formulaS23(x1; x2; x3; x4) = �(x1 ^ x2)� (x3 ^ x4)�� �(x1 _ x2) ^ (x3 � x4)� (9)shows that D(S23) = 3, and a similar formula works for S12.Optimum hains for n = 4. Exhaustive omputations for 4-variable funtionsare feasible beause suh funtions have only 216 = 65;536 possible truth tables.In fat we need only onsider half of those truth tables, beause the omplement �fof any funtion f has the same ost, length, and depth as f itself.

3

4 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Let's say that f(x1; : : : ; xn) is normal if f(0; : : : ; 0) = 0, and in general thatf(x1; : : : ; xn) � f(0; : : : ; 0) (10)is the \normalization" of f . Any Boolean hain an be normalized by normalizingeah of its steps and by making appropriate hanges to the operators; for if(x̂1; : : : ; x̂i�1) are the normalizations of (x1; : : : ; xi�1) and if xi = xj(i) Æi xk(i) asin (1), then x̂i is learly a binary funtion of x̂j(i) and x̂k(i). (Exerise 7 presentsan example.) Therefore we an restrit onsideration to normal Boolean hains,without loss of generality.Notie that a Boolean hain is normal if and only if eah of its binaryoperators Æi is normal. And there are only eight normal binary operators|three of whih, namely ?, , and , are trivial. So we an assume that allBoolean hains of interest are formed from the �ve operators ^, �, �, _, and �,whih are denoted respetively by ^ , _ , _ , _ , and + in Fig. 5. Furthermorewe an assume that j(i) < k(i) in eah step.There are 215 = 32;768 normal funtions of four variables, and we an om-pute their lengths without diÆulty by systematially enumerating all funtionsof length 0, 1, 2, et. Indeed, L(f) = r implies that f = g Æ h for some g and h,where L(g) + L(h) = r � 1 and Æ is one of the �ve nontrivial normal operators;so we an proeed as follows:Algorithm L (Find normal lengths). This algorithm determines L(f) for allnormal truth tables 0 � f < 22n�1, by building lists of all nonzero normalfuntions of length r for r � 0.L1. [Initialize.℄ Let L(0) 0 and L(f) 1 for 1 � f < 22n�1. Then, for1 � k � n, set L(xk) 0 and put xk into list 0, wherexk = (22n � 1)=(22n�k + 1) (11)is the truth table for xk. (See exerise 8.) Finally, set 22n�1 � n � 1; is the number of plaes where L(f) =1.L2. [Loop on r.℄ Do step L3 for r = 1, 2, : : : ; eventually the algorithm willterminate when beomes 0.L3. [Loop on j and k.℄ Do step L4 for j = 0, 1, : : : , and k = r � 1 � j, whilej � k.L4. [Loop on g and h.℄ Do step L5 for all g in list j and all h in list k. (If j = k,it suÆes to restrit h to funtions that follow g in list k.)L5. [Loop on f .℄ Do step L6 for f = g & h, f = �g & h, f = g & �h, f = g j h, andf = g � h. (Here g & h denotes the bitwise AND of the integers g and h; weare representing truth tables by integers in binary notation.)L6. [Is f new?℄ If L(f) = 1, set L(f) r, � 1, and put f in list r.Terminate the algorithm if = 0.Exerise 10 shows that a similar proedure will ompute all depths D(f).With a little more work, we an in fat modify Algorithm L so that it �ndsbetter upper bounds on C(f), by omputing a heuristi bit vetor �(f) alled

4

7.1.2 BOOLEAN EVALUATION 5Table 1THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITYC(f) Classes Funtions L(f) Classes Funtions D(f) Classes Funtions0 2 10 0 2 10 0 2 101 2 60 1 2 60 1 2 602 5 456 2 5 456 2 17 14583 20 2474 3 20 2474 3 179 564564 34 10624 4 34 10624 4 22 75525 75 24184 5 75 24184 5 0 06 72 25008 6 68 24640 6 0 07 12 2720 7 16 3088 7 0 0the \footprint" of f . A normal Boolean hain an begin in only 5�n2� di�erentways, sine the �rst step xn+1 must be either x1 ^ x2 or �x1 ^ x2 or x1 ^ �x2 orx1 _x2 or x1�x2 or x1 ^x3 or � � � or xn�1�xn. Suppose �(f) is a bit vetor oflength 5�n2� and U(f) is an upper bound on C(f), with the following property:Every 1 bit in �(f) orresponds to the �rst step of some Boolean hain thatomputes f in U(f) steps.Suh pairs (U(f); �(f)) an be omputed by extending the basi strategy ofAlgorithm L. Initially we set U(f) 1 and we set �(f) to an appropriate vetor0 : : : 010 : : : 0, for all funtions f of ost 1. Then, for r = 2, 3, : : : , we proeed tolook for funtions f = g Æ h where U(g) + U(h) = r � 1, as before, but with twohanges: (1) If the footprints of g and h have at least one element in ommon,namely if �(g) & �(h) 6= 0, then we know that C(f) � r � 1, so we an dereaseU(f) if it was � r. (2) If the ost of g Æ h is equal to (but not less than) oururrent upper bound U(f), we an set �(f) �(f) j (�(g) j �(h)) if U(f) = r,�(f) �(f) j (�(g) & �(h)) if U(f) = r � 1. Exerise 11 works out the details.It turns out that this footprint heuristi is powerful enough to �nd hains ofoptimum ost U(f) = C(f) for all funtions f , when n = 4. Moreover, we'll seelater that footprints also help us solve more ompliated evaluation problems.Aording to Table 7.1.1{5, the 216 = 65;536 funtions of four variablesbelong to only 222 distint lasses when we ignore minor di�erenes due topermutation of variables and/or omplementation of values. Algorithm L andits variants lead to the overall statistis shown in Table 1.*Evaluation with minimum memory. Suppose the Boolean values x1, : : : , xnappear in n registers, and we want to evaluate a funtion by performing asequene of operations having the formxj(i) xj(i) Æi xk(i); for 1 � i � r; (12)where 1 � j(i) � n and 1 � k(i) � n and Æi is a binary operator. At the end ofthe omputation, the desired funtion value should appear in one of the registers.When n = 3, for example, the four-step sequene(x1 = 00001111 x2 = 00110011 x3 = 01010101)x1 x1 � x2 (x1 = 00111100 x2 = 00110011 x3 = 01010101)x3 x3 ^ x1 (x1 = 00111100 x2 = 00110011 x3 = 00010100)x2 x2 ^ �x1 (x1 = 00111100 x2 = 00000011 x3 = 00010100)x3 x3 _ x2 (x1 = 00111100 x2 = 00000011 x3 = 00010111) (13)

5

6 COMBINATORIAL ALGORITHMS (F0C) 7.1.2omputes the median hx1x2x3i and puts it into the original position of x3. (Alleight possibilities for the register ontents are shown here as truth tables, beforeand after eah operation.)In fat we an hek the alulation by working with only one truth table at atime, instead of keeping trak of all three, if we analyze the situation bakwards.Let fl(x1; : : : ; xn) denote the funtion omputed by steps l, l + 1, : : : , r of thesequene, omitting the �rst l�1 steps; thus, in our example, f2(x1; x2; x3) wouldbe the result in x3 after the three steps x3 x3^x1, x2 x2^ �x1, x3 x3_x2.Then the funtion omputed in register x3 by all four steps isf1(x1; x2; x3) = f2(x1 � x2; x2; x3): (14)Similarly f2(x1; x2; x3) = f3(x1; x2; x3 ^ x1), f3(x1; x2; x3) = f4(x1; x2 ^ �x1; x3),f4(x1; x2; x3) = f5(x1; x2; x3 _ x2), and f5(x1; x2; x3) = x3. We an therefore gobak from f5 to f4 to � � � to f1 by operating on truth tables in an appropriate way.For example, suppose f(x1; x2; x3) is a funtion whose truth table ist = a0a1a2a3a4a5a6a7 ;then the truth table for g(x1; x2; x3) = f(x1 � x2; x2; x3) isu = a0a1a6a7a4a5a2a3 ;obtained by replaing ax by ax0 , wherex = (x1x2x3)2 implies x0 = ((x1�x2)x2x3)2:Similarly the truth table for, say, h(x1; x2; x3) = f(x1; x2; x3 ^ x1) isv = a0a0a2a2a4a5a6a7 :And we an use bitwise operations to ompute u and v from t:u = t� �(t� (t� 4)� (t� 4)) & (00110011)2�; (15)v = t� �(t� (t� 1)) & (01010000)2�: (16)Let Cm(f) be the length of a shortest minimum-memory omputation for f .The bakward-omputation priniple tells us that, if we know the truth tablesof all funtions f with Cm(f) < r, we an readily �nd all the truth tables offuntions with Cm(f) = r. Namely, we an restrit onsideration to normalfuntions as before. Then, for all normal g suh that Cm(g) = r � 1, we anonstrut the 5n(n� 1) truth tables forg(x1; : : : ; xj�1; xj Æ xk; xj+1; : : : ; xn) (17)and mark them with ost r if they haven't previously been marked. Exerise 14shows that those truth tables an all be omputed by performing simple bitwiseoperations on the truth table for g.When n = 4, all but 13 of the 222 basi funtion types turn out to haveCm(f) = C(f), so they an be evaluated in minimummemory without inreasingthe ost. In partiular, all of the symmetri funtions have this property|although that fat is not at all obvious from Fig. 5. Five lasses of funtions

6

7.1.2 BOOLEAN EVALUATION 7have C(f) = 5 but Cm(f) = 6; eight lasses have C(f) = 6 but Cm(f) = 7. Themost interesting example of the latter type is probably the funtion (x1 _ x2)�(x3 _ x4)� (x1 ^ x2 ^ x3 ^ x4), whih has ost 6 beause of the formulax1 � (x3 _ x4)� �x2 ^ (�x1 _ (x3 ^ x4))�; (18)but it has no minimum-memory hain of length less than 7. (See exerise 15.)*Determining the minimum ost. The exat value of C(f) an be found byobserving that all optimum Boolean hains (xn+1; : : : ; xn+r) for f satisfy at leastone of three onditions:i) xn+r = xj Æ xk, where xj and xk use no ommon intermediate results;ii) xn+1 = xj Æ xk, where either xj or xk is not used in steps xn+2, : : : , xn+r;iii) Neither of the above.In ase (i) we have f = g Æ h, where C(g) + C(h) = r � 1, and we an all thisa \top-down" onstrution. In ase (ii) we have f(x1; : : : ; xn) = g(x1; : : : ; xj�1;xj Æxk; xj+1; : : : ; xn), where C(g) = r�1; we all this onstrution \bottom-up."The best hains that reursively use only top-down onstrutions orrespondto minimum formula length, L(f). The best hains that reursively use onlybottom-up onstrutions orrespond to minimum-memory alulations, of lengthCm(f). We an do better yet, by mixing top-down onstrutions with bottom-uponstrutions; but we still won't know that we've found C(f), beause a speialhain belonging to ase (iii) might be shorter.Fortunately suh speial hains are rare, beause they must satisfy ratherstrong onditions, and they an be exhaustively listed when n and r aren't toolarge. For example, exerise 19 proves that no speial hains exist when r < n+2;and when n = 4, r = 6, there are only 25 essentially di�erent speial hains thatannot obviously be shortened:
1 12 234 1 12 23 4 1 12 23 4 1 12 234 1 12 234 1 12 234 1 12 23 4 11 22 34

1 12 23 4 11 2 234 11 22 3 4 11 22 3 4 11 22 3 4
11 22 34

11 22 34
11 22 34 11 2 23 4

11 2 23 4 11 2
2 34 11 2

2 34 11 2
2 34 11 2234 11 2

2 34 11 2
2 34 11 2

2 34By systematially trying 5r possibilities in every speial hain, one for eah wayto assign a normal operator to the internal nodes of the tree, we will �nd at least

7

8 COMBINATORIAL ALGORITHMS (F0C) 7.1.2one funtion f in every equivalene lass for whih the minimum ost C(f) isahievable only in ase (iii).In fat, when n = 4 and r = 6, these 25 � 56 = 390;625 trials yield onlyone lass of funtions that an't be omputed in 6 steps by any top-down-plus-bottom-up hain. The missing lass, typi�ed by the partially symmetri funtion(hx1x2x3i _ x4) � (x1^x2^x3), an be reahed in six steps by appropriatelyspeializing any of the �rst �ve hains illustrated above; for example, one way isx5 = x1 ^ x2; x6 = x1 _ x2; x7 = x3 � x5;x8 = x4 ^ �x5; x9 = x6 ^ x7; x10 = x8 _ x9; (19)orresponding to the �rst speial hain. Sine all other funtions have L(f) � 7,these trial alulations have established the true minimum ost in all ases.Historial notes: The �rst onerted attempts to evaluate all Boolean fun-tions f(w; x; y; z) optimally were reported in Annals of the Computation Labo-ratory of Harvard University 27 (1951), where Howard Aiken's sta� presentedheuristi methods and extensive tables of the best swithing iruits they wereable to onstrut. Their ost measure V (f) was di�erent from the ost C(f)that we've been onsidering, beause it was based on \ontrol grids" of vauumtubes: They had three kinds of gates, NOR, OR, and NAND, eah of whih ouldtake k inputs with ost k. Every input to suh a gate ould be either a variable,or the omplement of a variable, or the result of a previous gate. Furthermorethe funtion being evaluated was represented at the top level as an AND of anynumber of gates, with no additional ost.With those ost riteria, a funtion might not have the same ost as its om-plement, beause AND gates were possible only at the top level. One ould evalu-ate x^y as NOR(�x; �y), with ost 2; but the ost of �x_(�y^�z)=NAND(x;OR(y; z))was 4 while its omplement x ^ (y _ z) = AND�NOR(�x);OR(y; z)� ost only 3.Therefore the Harvard researhers needed to onsider 402 essentially di�er-ent lasses of 4-variable funtions instead of 222 (see the answer to exerise7.1.1{125). Of ourse in those days they were working by hand. They foundV (f) < 20 in all ases, exept for the 64 funtions equivalent to S01(w; x; y; z)_�S2(w; x; y) ^ z�, whih they evaluated with 20 ontrol grids as follows:g1 = NOR(�w; �x); g2 = NAND(�y; z); g3 = NOR(w; x);f = AND�NAND(g1; g2);NAND(g3;NOR(�y; �z));NOR(NOR(g3; �y; z);NOR(g1; g2; g3))�: (20)The �rst omputer program to �nd provably optimum iruits was writtenby Leo Hellerman [IEEE Transations EC-12 (1963), 198{223℄, who determinedthe fewest NOR gates needed to evaluate any given funtion f(x; y; z). He re-quired every input of every gate to be either an unomplemented variable orthe output of a previous gate; fan-in and fan-out were limited to at most 3.When two iruits had the same gate ount, he preferred the one with smallestsum-of-inputs. For example, he omputed �x = NOR(x) with ost 1; x _ y _ z =NOR(NOR(x; y; z)) with ost 2; hxyzi = NOR(NOR(x; y);NOR(x; z);NOR(y; z))

8

7.1.2 BOOLEAN EVALUATION 9Table 2THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITYC(f) Classes Funtions L(f) Classes Funtions D(f) Classes Funtions0 2 12 0 2 12 0 2 121 2 100 1 2 100 1 2 1002 5 1140 2 5 1140 2 17 53503 20 11570 3 20 11570 3 1789 67022424 93 109826 4 93 109826 4 614316 42882595925 389 995240 5 366 936440 5 0 06 1988 8430800 6 1730 7236880 6 0 07 11382 63401728 7 8782 47739088 7 0 08 60713 383877392 8 40297 250674320 8 0 09 221541 1519125536 9 141422 955812256 9 0 010 293455 2123645248 10 273277 1945383936 10 0 011 26535 195366784 11 145707 1055912608 11 0 012 1 1920 12 4423 31149120 12 0 0with ost 4; S1(x; y; z) = NOR�NOR(x; y; z); hxyzi� with ost 6; et. Sine helimited the fan-out to 3, he found that every funtion of three variables ould beevaluated with ost 7 or less, exept for the parity funtion x�y�z = (x�y)�z,where x�y has ost 4 beause it is NOR(NOR(x;NOR(x; y));NOR(y;NOR(x; y))).Eletrial engineers ontinued to explore other ost riteria; but four-variablefuntions seemed out of reah until 1977, when Frank M. Liang established thevalues of C(f) shown in Table 1. Liang's unpublished derivation was based ona study of all hains that annot be redued by the bottom-up onstrution.The ase n = 5. There are 616,126 lasses of essentially di�erent funtionsf(x1; x2; x3; x4; x5), aording to Table 7.1.1{5. Computers are now fast enoughthat this number is no longer frightening; so the author deided while writingthis setion to investigate C(f) for all Boolean funtions of �ve variables. Thanksto a bit of good luk, omplete results ould indeed be obtained, leading to thestatistis shown in Table 2.For this alulation Algorithm L and its variants were modi�ed to dealwith lass representatives, instead of with the entire set of 231 normal truthtables. The method of exerise 7.2.1.2{20 made it easy to generate all funtionsof a lass, given any one of them, resulting in a thousand-fold speedup. Thebottom-up method was enhaned slightly, allowing it to dedue for example thatf(x1 ^ x2; x1 _ x2; x3; x4; x5) has ost � r if C(f) = r � 2. After all lassesof ost 10 had been found, the top-down and bottom-up methods were able to�nd hains of length � 11 for all but seven lasses of funtions. Then the time-onsuming part of the omputation began, in whih approximately 53 millionspeial hains with n = 5 and r = 11 were generated; every suh hain led to511 = 48;828;125 funtions, some of whih would hopefully fall into the sevenremaining mystery lasses. But only six of those lasses were found to have 11-step solutions. The lone survivor, whose truth table is 169ae443 in hexadeimalnotation, is the unique lass for whih C(f) = 12, and it also has L(f) = 12.The resulting onstrutions of symmetri funtions are shown in Fig. 6.Some of them are astonishingly beautiful; some of them are beautifully simple;

9

10 COMBINATORIAL ALGORITHMS (F0C) 7.1.2+^ ^_ ^^ _ ^^ _1 12 2 53 4 3 4
S4 = + ^+ +^ ^^ _ _ ^

1 1 12 3 4 5 2 3 4 5
S45 =

+ + ^ +_ _+ ++ 1 23 3 41 24 5
S3 =

^_ +^ ^ +_ _ ++ 51 2 43 4 5 31 2
S35 = ^_ +_ ^ _+ ++ ^3 4 1 25 1 2 3 4

S34 = +^_ _+ + +++2 4 5 31 2

S345 =

+ __ ++ +_ _ +^ 4 541 2 3 31 2
S25 = ++ _+ + __ _ 51 2 3 4 1 2 3 4

S24 = + __ +_ + ++ +
1

2 3 4 51 2 3 4
S245 = +_+ ++ _ _ _+ +

2 32 421 5 4 5

S235 =

+_ _+ + ++ +2 3 4 51 2 3 4
S23 = + ^_ _+ ^ ^ +_ _

1
1 4 5 2 3 12 3 4 5

S234 = ^+ ++ __ _ + +1 12 3 4 5 2 3 4 5
S15 =

+ ^_ _+ + ++ +1 5 2 31 2 3 4
S14 = +_ +^ _ __ _ ++ + 112 3 4 5 2 3 4 5

S134 = +^ ++ + _ _+ +1 1 2 3 4 52 3 4 5
S125 =

Fig. 6. Boolean hains of minimum ostfor symmetri funtions of �ve variables.and others are simply astonishing. (Look, for example, at the 8-step omputationof S23(x1; x2; x3; x4; x5), or the elegant formula for S234, or the nonmonotonihains for S45 and S345.) Inidentally, Table 2 shows that all 5-variable funtionshave depth � 4, but no attempt to minimize depth has been made in Fig. 6.It turns out that all of these symmetri funtions an be evaluated inminimum memory without inreasing the ost. But no simple proof of thatfat is known.

10

7.1.2 BOOLEAN EVALUATION 11Multiple outputs. We often want to evaluate several di�erent Boolean fun-tions f1(x1; : : : ; xn), : : : , fm(x1; : : : ; xn) at the same input values x1, : : : , xn;in other words, we often want to evaluate a multibit funtion y = f(x), wherey = f1 : : : fm is a binary vetor of length m and x = x1 : : : xn is a binaryvetor of length n. With luk, muh of the work involved in the omputation ofone omponent value fj(x1; : : : ; xn) an be shared with the operations that areneeded to evaluate the other omponent values fk(x1; : : : ; xn).Let C(f) = C(f1 : : : fm) be the length of a shortest Boolean hain that om-putes all of the nontrivial funtions fj . More preisely, the hain (xn+1; : : : ; xn+r)should have the property that, for 1 � j � m, either fj(x1; : : : ; xn) = xl(j) orfj(x1; : : : ; xn) = �xl(j), for some l(j) with 0 � l(j) � n+r, where x0 = 0. ClearlyC(f) � C(f1) + � � �+ C(fm), but we might be able to do muh better.For example, suppose we want to ompute the funtions z1 and z0 de�ned by(z1z0)2 = x1 + x2 + x3; (21)the two-bit binary sum of three Boolean variables. We havez1 = hx1x2x3i and z0 = x1 � x2 � x3; (22)so the individual osts are C(z1) = 4 and C(z0) = 2. But it's easy to see thatthe ombined ost C(z1z0) is at most 5, beause x1 � x2 is a suitable �rst stepin the evaluation of eah bit zj :x6 = x3 ^ x4;x7 = x1 ^ x2;z1 = x8 = x6 _ x7: x4 = x1 � x2;z0 = x5 = x3 � x4; (23)Furthermore, exhaustive alulations show that C(z1z0) > 4; hene C(z1z0) = 5.Eletrial engineers traditionally all a iruit for (21) a full adder, beausen suh building bloks an be hooked together to add two n-bit numbers. Thespeial ase of (22) in whih x3 = 0 is also important, although it boils downsimply to z1 = x1 ^ x2 and z0 = x1 � x2 (24)and has omplexity 2; engineers all it a \half adder" in spite of the fat thatthe ost of a full adder exeeds the ost of two half adders.The general problem of radix-2 addition(xn�1 : : : x1x0)2(yn�1 : : : y1 y0)2(zn zn�1 : : : z1 z0)2 (25)is to ompute n + 1 Boolean outputs zn : : : z1z0 from the 2n Boolean inputsxn�1 : : : x1x0yn�1 : : : y1y0; and it is readily solved by the formulasj+1 = hxjyj j i; zj = xj � yj � j ; for 0 � j < n; (26)where the j are \arry bits" and we have 0 = 0, zn = n. Therefore we anuse a half adder to ompute 1 and z0, followed by n� 1 full adders to omputethe other 's and z's, aumulating a total ost of 5n � 3. And in fat N. P.Red'kin [Problemy Kibernetiki 38 (1981), 181{216℄ has proved that 5n�3 steps

11

12 COMBINATORIAL ALGORITHMS (F0C) 7.1.2are atually neessary, by onstruting an elaborate 35-page proof by indution,whih onludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this iruit,2n�1, is far too large for pratial parallel omputation, so a great deal of e�orthas gone into the task of devising iruits for addition that have depth O(logn)as well as reasonable ost. (See exerises 41{44.)Now let's extend (21) and try to ompute a general \sideways sum"(zblg n : : : z1z0)2 = x1 + x2 + � � �+ xn: (27)If n = 2k+1, we an use k full adders to redue the sum to (x1+ � � �+xn) mod 2plus k bits of weight 2, beause eah full adder dereases the number of weight-1bits by 2. For example, if n = 9 and k = 4 the omputation isx10=x1�x2�x3;y1=hx1x2x3i; x11=x4�x5�x6;y2=hx4x5x6i; x12=x7�x8�x9;y3=hx7x8x9i; x13=x10�x11�x12;y4=hx10x11x12i;and we have x1 + � � � + x9 = x13 + 2(y1 + y2 + y3 + y4). If n = 2k is even, asimilar redution applies but with a half adder at the end. The bits of weight 2an then be summed in the same way; so we obtain the reurrenes(n) = 5bn=2 � 3[n even℄ + s(bn=2); s(0) = 0; (28)for the total number of gates needed to ompute zblg n : : : z1z0. (A losed formulafor s(n) appears in exerise 30.) We have s(n) < 5n, and the �rst valuesn = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20s(n) = 0 2 5 9 12 17 20 26 29 34 37 44 47 52 55 63 66 71 74 81show that the method is quite eÆient even for small n. For example, whenn = 5 it produes ^ +_ _^ ^ ^ ^ ++++1 2 3 4 5 5431 2

S45 = z2 = = z1 = S23= z0 = S135; (29)
whih omputes three di�erent symmetri funtions z2 = S45(x1; : : : ; x5), z1 =S23(x1; : : : ; x5), z0 = S135(x1; : : : ; x5) in just 12 steps. The 10-step omputationof S45 is optimum, aording to Fig. 6, and of ourse the 4-step omputation ofS135 is also optimum. Furthermore, although C(S23) = 8, the funtion S23 isomputed here in a lever 10-step way that shares all but one gate with S45.Notie that we an now ompute any symmetri funtion eÆiently, beauseevery symmetri funtion of fx1; : : : ; xng is a Boolean funtion of zblg n : : : z1z0.We know, for example, that any Boolean funtion of four variables has omplexity� 7; therefore any symmetri funtion Sk1:::kt(x1; : : : ; x15) osts at most s(15)+7 = 62. Surprise: The symmetri funtions of n variables were among the hardestof all to evaluate, when n was small, but they're among the easiest when n � 10.

12

7.1.2 BOOLEAN EVALUATION 13We an also ompute sets of symmetri funtions eÆiently. If we want, say,to evaluate all n + 1 symmetri funtions Sk(x1; : : : ; xn) for 0 � k � n with asingle Boolean hain, we simply need to evaluate the �rst n+1minterms of z0, z1,: : : , zblg n. For example, when n = 5 the minterms that give us all funtions Skare respetively S0 = �z0 ^ �z1 ^ �z2, S1 = �z0 ^ �z1 ^ z2, : : : , S5 = z0 ^ �z1 ^ z2.How hard is it to ompute all 2n minterms of n variables? Eletrialengineers all this funtion an n-to-2n binary deoder, beause it onverts n bitsx1 : : : xn into a sequene of 2n bits d0d1 : : : d2n�1, exatly one of whih is 1. Thepriniple of \divide and onquer" suggests that we �rst evaluate all mintermson the �rst dn=2e variables, as well as all minterms on the last bn=2; then 2nAND gates will �nish the job. The ost of this method is t(n), wheret(0) = t(1) = 0; t(n) = 2n + t(dn=2e) + t(bn=2) for n � 2. (30)So t(n) = 2n+O(2n=2); there's roughly one gate per minterm. (See exerise 32.)Funtions with multiple outputs often help us build larger funtions withsingle outputs. For example, we've seen that the sideways adder (27) allowsus to ompute symmetri funtions; and an n-to-2n deoder also has manyappliations, in spite of the fat that 2n an be huge when n is large. A ase inpoint is the 2m-way multiplexer Mm(x1; : : : ; xm; y0; y1; : : : ; y2m�1), also knownas the m-bit storage aess funtion, whih has n = m + 2m inputs and takesthe value yk when (x1 : : : xm)2 = k. By de�nition we haveMm(x1; : : : ; xm; y0; y1; : : : ; y2m�1) = 2m�1_k=0 (dk ^ yk); (31)where dk is the kth output of an m-to-2m binary deoder; thus, by (30), we anevaluate Mm with 2m + (2m�1) + t(m) = 3n + O(pn) gates. But exerise 39shows that we an atually redue the ost to only 2n + O(pn). (See alsoexerise 79.)Asymptoti fats. We've seen lots of ases where Boolean funtions anbe evaluated with great eÆieny, espeially when the number of variables issmall. So it's natural to expet that, when more variables are present, evenmore opportunities for ingenious evaluations will arise. But the truth is exatlythe opposite, at least from a statistial standpoint:Theorem S. The ost of almost every Boolean funtion f(x1; : : : ; xn) exeeds2n=n. More preisely, if (n; r) Boolean funtions have omplexity � r, we have(r � 1)! (n; r) � 22r+1(n+ r � 1)2r: (32)Proof. If a funtion an be omputed in r � 1 steps, it is also omputable byan r-step hain. (This statement is obvious when r = 1, otherwise we an letxn+r = xn+r�1 ^ xn+r�1.) We will show that there aren't very many r-stephains, hene we an't ompute very many di�erent funtions with ost � r.Let � be a permutation of f1; : : : ; n+ rg that takes 1 7! 1, : : : , n 7! n, andn+r 7! n+r; there are (r�1)! suh permutations. Suppose (xn+1; : : : ; xn+r) is a

13

14 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Boolean hain in whih eah of the intermediate steps xn+1, : : : , xn+r�1 is usedin at least one subsequent step. Then the permuted hains de�ned by the rulexi = xj0(i) Æ0i xk0(i) = xj(i�)�� Æi� xk(i�)�� ; for n < i � n+ r; (33)are distint for di�erent �. (If � takes a 7! b, we write b = a� and a = b��.)For example, if � takes 5 7! 6 7! 7 7! 8 7! 9 7! 5, the hain (7) beomesOriginalx5 = x1 � x3;x6 = x1 � x2;x7 = x3 � x4;x8 = x5 _ x6;x9 = x6 � x7;x10 = x8 ^ �x9;
Permutedx5 = x1 � x2;x6 = x3 � x4;x7 = x9 _ x5;x8 = x5 � x6;x9 = x1 � x3;x10 = x7 ^ �x8:

(34)
Notie that we might have j0(i) � k0(i) or j0(i) > i or k0(i) > i, ontrary to ourusual rules. But the permuted hain omputes the same funtion xn+r as before,and it doesn't have any yles by whih an entry is de�ned indiretly in termsof itself, beause the permuted xi is the original xi�.We an restrit onsideration to normal Boolean hains, as remarked earlier.So the (n; r)=2 normal Boolean funtions of ost � r lead to (r � 1)! (n; r)=2di�erent permuted hains, where the operator Æi in eah step is either ^, _, �,or �. And there are at most 4r(n+r�1)2r suh hains, beause there are fourhoies for Æi and n+r�1 hoies for eah of j(i) and k(i), for n < i � n + r.Equation (32) follows; and we obtain the opening statement of the theorem bysetting r = b2n=n. (See exerise 46.)On the other hand, there's also good news for in�nity-minded people: Wean atually evaluate every Boolean funtion of n variables with only slightlymore than 2n=n steps of omputation, even if we avoid � and �, using a tehniquedevised by C. E. Shannon and improved by O. B. Lupanov [Bell System Teh.J. 28 (1949), 59{98, Theorem 6; Isvestiia Vuzov, Radio�zika 1 (1958), 120{140℄.In fat, the Shannon{Lupanov approah leads to useful results even whenn is small, so let's get aquainted with it by studying a small example. Considerf(x1; x2; x3; x4; x5; x6) = �(x1x2x3x4x5x6)2 is prime�; (35)a funtion that identi�es all 6-bit prime numbers. Its truth table has 26 = 64bits, and we an work with it onveniently by using a 4 � 16 array to look atthose bits instead of on�ning ourselves to one dimension:x3 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1x4 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1x5 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1x6 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1x1x2 = 00 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0x1x2 = 01 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 o Group 1x1x2 = 10 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1x1x2 = 11 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 o Group 2

(36)

14

7.1.2 BOOLEAN EVALUATION 15The rows have been divided into two groups of two rows eah; and eah groupof rows has 16 olumns, whih are of four basi types, namely 00 , 01 , 10 , or 11 . Thuswe see that the funtion an be expressed asf(x1; : : : ; x6) = �[x1x2 2f00g℄ ^ [x3x4x5x6 2f0010; 0101; 1011g℄�_ �[x1x2 2f01g℄ ^ [x3x4x5x6 2f0001; 1111g℄�_ �[x1x2 2f00; 01g℄ ^ [x3x4x5x6 2f0011; 0111; 1101g℄�_ �[x1x2 2f10g℄ ^ [x3x4x5x6 2f1001; 1111g℄�_ �[x1x2 2f11g℄ ^ [x3x4x5x6 2f1101g℄�_ �[x1x2 2f10; 11g℄ ^ [x3x4x5x6 2f0101; 1011g℄�: (37)(The �rst line orresponds to group 1, type 10 , then omes group 1, type 01 , et.;the last line orresponds to group 2 and type 11 .) A funtion like �(x3x4x5x6)2 2f2; 5; 11g� is the OR of three minterms of fx3; x4; x5; x6g.In general we an view the truth table as a 2k � 2n�k array, with l groupsof rows having either b2k=l or d2k=le rows in eah group. A group of size mwill have olumns of 2m basi types. We form a onjuntion (git(x1; : : : ; xk) ^hit(xk+1; : : : ; xn)) for eah group i and eah nonzero type t, where git is the ORof all minterms of fx1; : : : ; xkg for the rows of the group where t has a 1, whilehit is the OR of all minterms of fxk+1; : : : ; xng for the olumns having type t ingroup i. The OR of all these onjuntions (git ^ hit) gives f(x1; : : : ; xn).One we've hosen the parameters k and l, with 1 � k � n�2 and 1 � l � 2k,the omputation starts by omputing all the minterms of fx1; : : : ; xkg and allthe minterms of fxk+1; : : : ; xng, in t(k) + t(n � k) steps (see (30)). Then, for1 � i � l, we let group i onsist of rows for the values of (x1; : : : ; xk) suh that(i � 1)2k=l � (x1 : : : xk)2 < i2k=l; it ontains mi = di2k=le � d(i � 1)2k=le rows.We form all funtions git for t 2 Si, the family of 2mi � 1 nonempty subsets ofthose rows; 2mi �mi � 1 ORs of previously omputed minterms will aomplishthat task. We also form all funtions hit representing olumns of nonzero type t;for this purpose we'll need at most 2n�k�3 OR operations in eah group i, sinewe an OR eah minterm into the h funtion of the appropriate type t. Finallywe ompute f = Wli=1Wt2Si(git ^ hit). The total ost is at mostt(k) + t(n�k) + (l�1) + lXi=1�(2mi�mi�1) + (2n�k�3) + (2mi�2)�; (38)thus we want to hoose k and l so that this upper bound is minimized. Exerise 52disusses the best hoie when n is small. And when n is large, a good hoieyields a provably near-optimum hain, at least for most funtions:Theorem L. Let C(n) denote the ost of the most expensive Boolean funtionsof n variables. Then as n!1 we haveC(n) � 2nn �1 + lgnn +O� 1n��; (39)C(n) � 2nn �1 + 3 lgnn +O� 1n��: (40)

15

16 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Proof. Exerise 48 shows that the lower bound (39) is a onsequene of The-orem S. For the upper bound, we set k = b2 lgn and l = d2k=(n � 3 lgn)e inLupanov's method; see exerise 53.Synthesizing a good hain. Formula (37) isn't the best way to implement a 6-bit prime detetor, but it does suggest a deent strategy. For example, we needn'tlet variables x1 and x2 govern the rows: Exerise 51 shows that a better hainresults if the rows are based on x5x6 while the olumns ome from x1x2x3x4,and in general there are many ways to partition a truth table by playing k ofthe variables against the other n� k.Furthermore, we an improve on (37) by using our omplete knowledge ofall 4-variable funtions; there's no need to evaluate a funtion like [x3x4x5x6 2f0010; 0101; 1011g℄ by �rst omputing the minterms of fx3; x4; x5; x6g, if we knowthe best way to evaluate every suh funtion from srath. On the other hand, wedo need to evaluate several 4-variable funtions simultaneously, so the mintermapproah might not be suh a bad idea after all. Can we really improve on it?Let's try to �nd a good way to synthesize a Boolean hain that omputes agiven set of 4-variable funtions. The six funtions of x3x4x5x6 in (37) are rathertame (see exerise 54), so we'll learn more by onsidering a more interestingexample hosen from everyday life. a b
de

f gA seven-segment display is a now-ubiquitous way to representa 4-bit number (x1x2x3x4)2 in terms of seven leverly positionedsegments that are either visible or invisible. The segments aretraditionally named (a; b; ; d; e; f; g) as shown; we get a `0' byturning on segments (a; b; ; d; e; f), but a `1' uses only segments(b;). (Inidentally, the idea for suh displays was invented by F. W.Wood, U.S. Patent 974943 (1910), although Wood's original designused eight segments beause he thought that a `4' requires a diagonal stroke.)Seven-segment displays usually support only the deimal digits `0', `1', : : : , `9';but of ourse a omputer sientist's digital wath should display also hexadeimaldigits. So we shall design seven-segment logi that displays the sixteen digits(41)when given the respetive inputs x1x2x3x4 = 0000, 0001, 0010, : : : , 1111.In other words, we want to evaluate seven Boolean funtions whose truthtables are respetively a = 1011 0111 1110 0011,b = 1111 1001 1110 0100, = 1101 1111 1111 0100,d = 1011 0110 1101 1110,e = 1010 0010 1011 1111,f = 1000 1111 1111 0011,g = 0011 1110 1111 1111.
(42)

16

7.1.2 BOOLEAN EVALUATION 17If we simply wanted to evaluate eah funtion separately, several methods thatwe've already disussed would tell us how to do it with minimum osts C(a) = 5,C(b) = C() = C(d) = 6, C(e) = C(f) = 5, and C(g) = 4; the total ost for allseven funtions would then be 37. But we want to �nd a single Boolean hainthat ontains them all, and the shortest suh hain is presumably muh moreeÆient. How an we disover it?Well, the task of �nding a truly optimum hain for fa; b; ; d; e; f; gg isprobably infeasible from a omputational standpoint. But a surprisingly goodsolution an be found with the help of the \footprint" idea explained earlier.Namely, we know how to ompute not only a funtion's minimum ost, but alsothe set of all �rst steps onsistent with that minimum ost in a normal hain.Funtion e, for example, has ost 5, but only if we evaluate it by starting withone of the instrutionsx5 = x1 � x4 or x5 = x2 ^ �x3 or x5 = x2 _ x3:Fortunately, one of the desirable �rst steps belongs to four of the sevenfootprints: Funtions , d, f , and g an all be evaluated optimally by startingwith x5 = x2�x3. So that is a natural hoie; it essentially saves us three steps,beause we know that at most 33 of the original 37 steps will be needed to �nish.Now we an reompute the osts and footprints of all 216 funtions, proeed-ing as before but also initializing the ost of the new funtion x5 to zero. Theosts of funtions , d, f , and g derease by 1 as a result, and the footprintshange too. For example, funtion a still has ost 5, but its footprint hasinreased from fx1 � x3; x2 ^ x3g to fx1 � x3; x1 ^ x4; �x1 ^ x4; x2 ^ x3; �x2 ^ x4;x2 � x4; x4 ^ x5; x4 � x5g when the funtion x5 = x2 � x3 is available for free.In fat, x6 = �x1 ^ x4 is ommon to four of the new footprints, so again wehave a natural way to proeed. And when everything is realulated with zeroost given to both x5 and x6, the subsequent step x7 = x4 � x5 turns out to bedesirable in three of the newest footprints. Continuing in this \greedy" fashion,we aren't always so luky, but a remarkable hain of only 22 steps does emerge:x5 = x2 � x3;x6 = �x1 ^ x4;x7 = x4 � x5;x8 = x1 � x2;x9 = x3 ^ �x6;x10 = x8 ^ �x9;x11 = x1 � x9;�d = x12 = x7 ^ �x11;

x13 = x7 � x10;x14 = x5 ^ x13;�b = x15 = x9 � x14;x16 = x5 � x6;x17 = x3 ^ �x15;�a = x18 = �x17 ^ x16;x19 = x9 _ x14;� = x20 = �x8 ^ x19;

x21 = x7 ^ x10;�e = x22 = x6 _ x21;x23 = x5 _ x6;�f = x24 = �x8 ^ x15;x25 = x1 _ x5;g = x26 = x9 _ x25: (43)
(This is a normal hain, so it ontains the normalizations f�a;�b; �; �d; �e; �f; gginstead of fa; b; ; d; e; f; gg. Simple hanges will produe the unnormalizedfuntions without hanging the ost.)Partial funtions. In pratie the output value of a Boolean funtion is oftenspei�ed only at ertain inputs x1 : : : xn, and the outputs in other ases don'treally matter. We might know, for example, that some of the input ombinations

17

18 COMBINATORIAL ALGORITHMS (F0C) 7.1.2will never arise. In suh ases, we plae an asterisk into the orrespondingpositions of the truth table, instead of speifying 0 or 1 everywhere.The seven-segment display provides a ase in point, beause most of itsappliations involve only the ten binary-oded deimal inputs for whih we have(x1x2x3x4)2 � 9. We don't are what segments are visible in the other six ases.So the truth tables of (42) atually beomea = 1011 0111 11�� ����,b = 1111 1001 11�� ����, = 1101 1111 11�� ����,d = 1011 0110 11�� ����,e = 1010 0010 10�� ����,f = 1000 111� 11�� ����,g = 0011 1110 11�� ����.
(44)

(Funtion f here has an asterisk also in position x1x2x3x4 = 0111, beause a `7'an be displayed as either or . Both of these styles appeared about equallyoften in the display units available to the author when this setion was written.Trunated variants of the and the were sometimes seen in olden days, butthey have thankfully disappeared.)Asterisks in truth tables are generally known as don't-ares|a quaint termthat ould only have been invented by an eletrial engineer. Table 3 shows thatthe freedom to hoose arbitrary outputs is advantageous. For example, there are�163 �213 = 4;587;520 truth tables with 3 don't-ares; 69% of them ost 4 or less,even though only 21% of the asterisk-free truth tables permit suh eonomy. Onthe other hand, don't-ares don't save us as muh as we might hope; exerise 63proves that a random funtion with, say, 30% don't-ares in its truth table tendsto save only about 30% of the ost of a fully spei�ed funtion.What is the shortest Boolean hain that evaluates the seven partially spe-i�ed funtions in (44)? Our greedy-footprint method adapts itself readily tothe presene of don't-ares, beause we an OR together the footprints of all 2dfuntions that math a pattern with d asterisks. The initial osts to evaluate eahfuntion separately are now redued to C(a) = 3, C(b) = C() = 2, C(d) = 5,C(e) = 2, C(f) = 3, C(g) = 4, totalling just 21 instead of 37. Funtion g hasn'tgotten heaper, but it does have a larger footprint. Proeeding as before, buttaking advantage of the don't-ares, we now an �nd a suitable hain of lengthonly 13|a hain with fewer than two operations per output(!):x5 = x1 � x2;x6 = x3 ^ �x4;x7 = x1 � x3;x8 = x2 ^ �x6;x9 = x3 _ x4;
�e = x10 = x4 _ x8;g = x11 = x7 � x8;x12 = x4 � x11;�d = x13 = x10 ^ x12;�a = x14 = �x3 ^ x13;

�b = x15 = x2 ^ �x13;� = x16 = �x2 ^ x6;�f = x17 = �x5 ^ x9: (45)
Ti-ta-toe. Let's turn now to a slightly larger problem, based on a popularhildren's game. Two players take turns �lling the ells of a 3 � 3 grid. Oneplayer writes X's and the other writes O's, ontinuing until there either are three

18

7.1.2 BOOLEAN EVALUATION 19Table 3THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON'T-CARES AND COST = 0 = 1 = 2 = 3 = 4 = 5 = 6 = 7d = 0 10 60 456 2474 10624 24184 25008 2720d = 1 160 960 7296 35040 131904 227296 119072 2560d = 2 1200 7200 52736 221840 700512 816448 166144d = 3 5600 33600 228992 831232 2045952 1381952 60192d = 4 18200 108816 666528 2034408 3505344 1118128 3296d = 5 43680 257472 1367776 3351488 3491648 433568 32d = 6 80080 455616 2015072 3648608 1914800 86016d = 7 114400 606944 2115648 2474688 533568 12032d = 8 128660 604756 1528808 960080 71520 896d = 9 114080 440960 707488 197632 4160d = 10 78960 224144 189248 20160d = 11 41440 72064 25472 800d = 12 15480 12360 1280d = 13 3680 800d = 14 480d = 15 32d = 16 1X's or three O's in a straight line (in whih ase that player wins) or all nineells are �lled without a winner (in whih ase it's a \at's game" or tie). Forexample, the game might proeed thus:X XO X XO OX XO OX XXO OX XXO O OX XXOXO ; (46)X has won. Our goal is to design a mahine that plays ti-ta-toe optimally|making a winning move from eah position in whih a fored vitory is possible,and never making a losing move from a position in whih defeat is avoidable.More preisely, we will set things up so that there are 18 Boolean variablesx1, : : : , x9, o1, : : : , o9, whih govern lamps to illuminate ells of the urrentposition. The ells are numbered 1 2 34 5 67 8 9 as on a telephone dial. Cell j displaysan X if xj = 1, an O if oj = 1, or remains blank if xj = oj = 0.* We neverhave xj = oj = 1, beause that would display `XO'. We shall assume that thevariables x1 : : : x9o1 : : : o9 have been set to indiate a legal position in whihnobody has won; the omputer plays the X's, and it is the omputer's turn tomove. For this purpose we want to de�ne nine funtions y1, : : : , y9, where yjmeans \hange xj from 0 to 1." If the urrent position is a at's game, we shouldmake y1 = � � � = y9 = 0; otherwise exatly one yj should be equal to 1, and ofourse the output value yj = 1 should our only if xj = oj = 0.With 18 variables, eah of our nine funtions yj will have a truth table ofsize 218 = 262;144. It turns out that only 4520 legal inputs x1 : : : x9o1 : : : o9 are* This setup is based on an exhibit from the early 1950s at the Museum of Siene andIndustry in Chiago, where the author was �rst introdued to the magi of swithing iruits.The mahine in Chiago, designed by researhers at Bell Telephone Laboratories, allowed meto go �rst; yet I soon disovered that there was no way to defeat it. Therefore I deided to moveas stupidly as possible, hoping that the designers had not antiipated suh bizarre behavior.In fat I allowed the mahine to reah a position where it had two winning moves; and it seizedboth of them! Moving twie is of ourse a agrant violation of the rules, so I had won a moralvitory even though the mahine announed that I had lost.

19

20 COMBINATORIAL ALGORITHMS (F0C) 7.1.2I ommened an examination of a game alled \tit-tat-to" . . .to asertain what number of ombinations were requiredfor all the possible variety of moves and situations.I found this to be omparatively insigni�ant.. . . A diÆulty, however, arose of a novel kind.When the automaton had to move, it might our that there weretwo di�erent moves, eah equally onduive to his winning the game.. . . Unless, also, some provision were made,the mahine would attempt two ontraditory motions.| CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)possible, so those truth tables are 98.3% �lled with don't-ares. Still, 4520 isunomfortably large if we hope to design and understand a Boolean hain thatmakes sense intuitively. Setion 7.1.4 will disuss alternative ways to representBoolean funtions, by whih it is often possible to deal with hundreds of variableseven though the assoiated truth tables are impossibly large.Most funtions of 18 variables require more than 218=18 gates, but let's hopewe an do better. Indeed, a plausible strategy for making suitable moves inti-ta-toe suggests itself immediately, in terms of several onditions that aren'thard to reognize:wj ; an X in ell j will win, ompleting a line of X's;bj ; an O in ell j would lose, ompleting a line of O's;fj ; an X in ell j will give X two ways to win;dj ; an O in ell j would give O two ways to win.For example, X's move to the enter in (46) was needed to blok O, so it was oftype b5; fortunately it was also of type f5, foring a win on the next move.Let L = ff1;2;3g;f4;5;6g;f7;8;9g;f1;4;7g;f2;5;8g;f3;6;9g;f1;5;9g;f3;5;7ggbe the set of winning lines. Then we havemj = �xj ^ �oj ; [moving in ell j is legal℄ (47)wj = mj ^ Wfi;j;kg2L(xi ^ xk); [moving in ell j wins℄ (48)bj = mj ^ Wfi;j;kg2L(oi ^ ok); [moving in ell j bloks℄ (49)fj = mj ^ S2�f�ik j fi; j; kg 2 Lg�; [moving in ell j forks℄ (50)dj = mj ^ S2�f�ik j fi; j; kg 2 Lg�; [moving in ell j defends℄ (51)here �ik and �ik denote a single X or O together with a blank, namely�ik = (xi^mk) _ (mi^xk); �ik = (oi^mk) _ (mi^ok): (52)For example, b1 = m1^�(o2^o3)_(o4^o7)_(o5^o9)�; f2 = m2^S2(�13; �58) =m2 ^ �13 ^ �58; d5 = m5 ^ S2(�19; �28; �37; �46).With these de�nitions we might try rank-ordering our moves thus:fw1; : : : ; w9g> fb1; : : : ; b9g> ff1; : : : ; f9g> fd1; : : : ; d9g> fm1; : : : ;m9g: (53)\Win if you an; otherwise blok if you an; otherwise fork if you an; otherwisedefend if you an; otherwise make a legal move." Furthermore, when hoosing

20

7.1.2 BOOLEAN EVALUATION 21between legal moves it seems sensible to use the orderingm5 > m1 > m3 > m9 > m7 > m2 > m6 > m8 > m4; (54)beause 5, the middle ell, ours in four winning lines, while a orner move to1, 3, 9, or 7 ours in three, and a side ell 2, 6, 8, or 4 ours in only two. Wemight as well adopt this ordering of subsripts within all �ve groups of movesfwjg, fbjg, ffjg, fdjg, and fmjg in (53).To ensure that at most one move is hosen, we de�ne w0j , b0j , f 0j , d0j , m0j tomean \a prior hoie is better." Thus, w05 = 0, w01 = w5, w03 = w1 _ w01, : : : ,w04 = w8 _ w08, b05 = w4 _ w04, b01 = b5 _ b05, : : : , m04 = m8 _m08. Then we anomplete the de�nition of a ti-ta-toe automaton by lettingyj = (wj^ ��w0j)_ (bj^�b0j)_ (fj^ �f 0j)_ (dj^ �d0j)_ (mj^ ��m0j); for 1 � j � 9. (55)So we've onstruted 9 gates for the m's, 48 for the w's, 48 for the b's, 144 forthe �'s and �'s, 35 for the f 's (with the help of Fig. 5), 35 for the d's, 43 for theprimed variables, and 80 for the y's. Furthermore we an use our knowledge ofpartial 4-variable funtions to redue the six operations in (52) to only four,�ik = (xi�xk) _ (oi�ok); �ik = (xi�xk) _ (oi�ok): (56)This trik saves 48 gates; so our design has ost 396 gates altogether.The strategy for ti-ta-toe in (47){(56) works �ne in most ases, but it alsohas some glaring glithes. For example, it loses ignominiously in the gameO OX OXO O XXO O XXO O O XXOXO O XOXOXO ; (57)the seond X move is d3, defending against a fork by O, yet it atually fores Oto fork in the opposite orner! Another failure arises, for example, after positionXO, when move m5 leads to the at's game XXO, XXOO, XXXOO, XOXXOO, XOX XXOO, XOOX XXOO, X XOOX XXOO, insteadof to the vitory for X that appeared in (46). Exerise 65 pathes things up andobtains a fully orret Boolean ti-ta-toe player that needs just 445 gates.*Funtional deomposition. If the funtion f(x1; : : : ; xn) an be written inthe form g(x1; : : : ; xk; h(xk+1; : : : ; xn)), it's usually a good idea to evaluate y =h(xk+1; : : : ; xn) �rst and then to ompute g(x1; : : : ; xk; y). Robert L. Ashenhurstinaugurated the study of suh deompositions in 1952 [see Annals ComputationLab. Harvard University 29 (1957), 74{116℄, and observed that there's an easyway to reognize when f has this speial property: If we write the truth tablefor f in a 2k � 2n�k array as in (36), with rows for eah setting of x1 : : : xk andolumns for eah setting of xk+1 : : : xn, then the desired subfuntions g and hexist if and only if the olumns of this array have at most two di�erent values.For example, the truth table for the funtion hx1x2hx3x4x5ii is0 0 0 0 0 0 0 00 0 0 1 0 1 1 10 0 0 1 0 1 1 11 1 1 1 1 1 1 1

21

22 COMBINATORIAL ALGORITHMS (F0C) 7.1.2when expressed in this two-dimensional form. One type of olumn orrespondsto the ase h(xk+1; : : : ; xn) = 0; the other orresponds to h(xk+1; : : : ; xn) = 1.In general the variables X = fx1; : : : ; xng might be partitioned into any twodisjoint subsets Y = fy1; : : : ; ykg and Z = fz1; : : : ; zn�kg, and we might havef(x) = g(y; h(z)). We ould test for a (Y; Z) deomposition by looking at theolumns of the 2k � 2n�k truth table whose rows orrespond to values of y. Butthere are 2n suh ways to partition X; and all of them are potential winners,exept for trivial ases when jY j = 0 or jZj � 1. How an we avoid examiningsuh a humungous number of possibilities?A pratial way to proeed was disovered by V. Y.-S. Shen, A. C. MKellar,and P. Weiner [IEEE Transations C-20 (1971), 304{309℄, whose method usuallyneeds only O(n2) steps to identify any potentially useful partition (Y; Z) thatmay exist. The basi idea is simple: Suppose xi 2 Z, xj 2 Z, and xm 2 Y .De�ne eight binary vetors Æl for l = (l1l2l3)2, where Æl has (l1; l2; l3) respetivelyin omponents (i; j;m), and zeros elsewhere. Consider any randomly hosenvetor x = x1 : : : xn, and evaluate fl = f(x+Æl) for 0 � l � 7. Then the four pairs�f0f1� �f2f3� �f4f5� �f6f7� (58)will appear in a 2�4 submatrix of the 2k�2n�k truth table. So a deompositionis impossible if these pairs are distint, or if they ontain three di�erent values.Let's all the pairs \good" if they're all equal, or if they have only twodi�erent values. Otherwise they're \bad." If f has essentially random behavior,we'll soon �nd bad pairs if we do this experiment with several di�erent randomlyhosen vetors x, beause only 88 of the 256 possibilities for f0f1 : : : f7 orrespondto a good set of pairs; the probability of �nding good pairs ten times in a row isonly (88256)10 � :00002. And when we do disover bad pairs, we an onlude thatxi 2 Z and xj 2 Z =) xm 2 Z; (59)beause the alternative xm 2 Y is impossible.Suppose, for example, that n = 9 and that f is the funtion whose truthtable 11001001000011 : : : 00101 onsists of the 512 most signi�ant bits of �, inbinary notation. (This is the \more-or-less random funtion" that we studiedfor n = 4 in (5) and (6) above.) Bad pairs for the � funtion are quiklyfound in eah of the ases (i; j;m) for whih m 6= i < j 6= m. Indeed, inthe author's experiments, 170 of those 252 ases were deided immediately; theaverage number of random x vetors per ase was only 1.52; and only one aseneeded as many as eight x's before bad pairs appeared. Thus (59) holds for allrelevant (i; j;m), and the funtion is learly indeomposable. In fat, exerise73 points out that we needn't make 252 tests to establish the indeomposabilityof this � funtion; only �n2� = 36 of them would have been suÆient.Turning to a less random funtion, let f(x1; : : : ; x9) = (detX) mod 2, whereX = 0�x1 x2 x3x4 x5 x6x7 x8 x9
1A : (60)

22

7.1.2 BOOLEAN EVALUATION 23This funtion does not satisfy ondition (59) when i = 1, j = 2, and m = 3,beause there are no bad pairs in that ase. But it does satisfy (59) for 4 � m � 9when fi; jg = f1; 2g. We an denote this behavior by the onvenient abbreviation`12)456789'; the full set of impliations, for all pairs fi; jg, is12)45678913)45678914)23568915)3678916)2578917)235689
18)3456919)2456823)45678924)3678925)13467926)14789

27)3456928)13467929)1456734)2578935)1478936)124578
37)2456838)1456739)12457845)12378946)12378947)235689

48)1236949)1235856)12378957)1236958)13467959)12347
67)1235868)1234769)12457878)12345679)12345689)123456(see exerise 69). Bad pairs are a little more diÆult to �nd when we probethis funtion at random: The average number of x's needed in the author'sexperiments rose to about 3.6, when bad pairs did exist. And of ourse therewas a need to limit the testing, by hoosing a tolerane threshold t and thengiving up when t onseutive trials failed to �nd any bad pairs. Choosing t = 10would have found all but 8 of the 198 impliations listed above.Impliations like (59) are Horn lauses, and we know from Setion 7.1.1 thatit's easy to make further dedutions from Horn lauses. Indeed, the method ofexerise 74 will dedue that the only possible partition with jZj > 1 is the trivialone (Y = ;, Z = fx1; : : : ; x9g), after looking at fewer than 50 ases (i; j;m).Similar results our when f(x1; : : : ; x9) = [perX > 0℄, where per denotesthe permanent funtion. (In this ase f tells us if there is a mathing in thebipartite subgraph of K3;3 whose edges are spei�ed by the variables x1 : : : x9.)Now there are just 180 impliations,12)45678913)45678914)23568915)367816)257917)235689

18)345919)246823)45678924)367825)13467926)1489
27)345928)13467929)156734)257935)148936)124578

37)246838)156739)12457845)12378946)12378947)235689
48)126949)135856)12378957)126958)13467959)2347

67)135868)234769)12457878)12345679)12345689)123456;only 122 of whih would have been disovered with t = 10 as the uto� threshold.(The best hoie of t is not lear; perhaps it should vary dynamially.) Still, those122 Horn lauses were more than enough to establish indeomposability.What about a deomposable funtion? With f = hx2x3x6x9hx1x4x5x7x8iiwe get i^j)m for allm =2 fi; jg, exept when fi; jg � f1; 4; 5; 7; 8g; in the latterase, m must also belong to f1; 4; 5; 7; 8g. Although only 185 of these 212 impli-ations were disovered with tolerane t = 10, the partition Y = fx2; x3; x6; x9g,Z = fx1; x4; x5; x7; x8g emerged quikly as a strong possibility.Whenever a potential deomposition is supported by the evidene, we needto verify that the orresponding 2k � 2n�k truth table does indeed have onlyone or two distint olumns. But we're happy to spend 2n units of time on thatveri�ation, beause we've greatly simpli�ed the evaluation of f .

23

24 COMBINATORIAL ALGORITHMS (F0C) 7.1.2The omparison funtion f = �(x1x2x3x4)2 � (x5x6x7x8)2 + x9� is anotherinteresting ase. Its 184 potentially deduible impliations are12)345678913)245678914)235678915)234678916)234578917)2345689
18)234567919)234567823)4678924)3678925)134678926)34789

27)3468928)3467929)3467834)78935)124678936)24789
37)48938)47939)47845)123678946)2378947)389

48)949)856)123478957)123468958)123467959)1234678
67)2348968)2347969)2347878)34979)34889)4;and 145 of them were found when t = 10. Three deompositions reveal them-selves in this ase, having Z = fx4; x8; x9g, Z = fx3; x4; x7; x8; x9g, and Z =fx2; x3; x4; x6; x7; x8; x9g, respetively. Ashenhurst proved that we an redue fimmediately as soon as we �nd a nontrivial deomposition; the other deompo-sitions will show up later, when we try to redue the simpler funtions g and h.*Deomposition of partial funtions. When the funtion f is only partiallyspei�ed, a deomposition with partition (Y; Z) hinges on being able to assignvalues to the don't-ares so that at most two di�erent olumns appear in theorresponding 2k � 2n�k truth table.Two vetors u1 : : : um and v1 : : : vm onsisting of 0s, 1s, and �s are said tobe inompatible if either uj = 0 and vj = 1 or uj = 1 and vj = 0, for some j|equivalently, if the sububes of the m-ube spei�ed by u and v have no pointsin ommon. Consider the graph whose verties are the olumns of a truth tablewith don't-ares, where u���v if and only if u and v are inompatible. We anassign values to the �s to ahieve at most two distint olumns if and only if thisgraph is bipartite. For if u1, : : : , ul are mutually ompatible, their generalizedonsensus u1t� � �tul, de�ned in exerise 7.1.1{32, is ompatible with all of them.[See S. L. Hight, IEEE Trans. C-22 (1973), 103{110; E. Boros, V. Gurvih, P. L.Hammer, T. Ibaraki, and A. Kogan, Disrete Applied Math. 62 (1995), 51{75.℄Sine a graph is bipartite if and only if it ontains no odd yles, we an easilytest this ondition with a depth-�rst searh (see Setion 7.4.1).Consequently the method of Shen, MKellar, and Weiner works also whendon't-ares are present: The four pairs in (58) are onsidered bad if and onlyif three of them are mutually inompatible. We an operate almost as before,although bad pairs will naturally be harder to �nd when there are lots of �s (seeexerise 72). However, Ashenhurst's theorem no longer applies. When severaldeompositions exist, they all should be explored further, beause they might usedi�erent settings of the don't-ares, and some might be better than the others.Although most funtions f(x) have no simple deomposition g(y; h(z)), weneedn't give up hope too quikly, beause other forms like g(y; h1(z); h2(z)) mightwell lead to an eÆient hain. If, for example, f is symmetri in three of its vari-ables fz1; z2; z3g, we an always write f(x) = g�y; S12(z1; z2; z3); S13(z1; z2; z3)�,sine S12(z1; z2; z3) and S13(z1; z2; z3) haraterize the value of z1 + z2 + z3.(Notie that just four steps will suÆe to ompute both S12 and S13.)In general, as observed by H. A. Curtis [JACM 8 (1961), 484{496℄, f(x) anbe expressed in the form g(y; h1(z); : : : ; hr(z)) if and only if the 2k � 2n�k truth

24

7.1.2 BOOLEAN EVALUATION 25table orresponding to Y and Z has at most 2r di�erent olumns. And whendon't-ares are present, the same result holds if and only if the inompatibilitygraph for Y and Z an be olored with at most 2r olors.For example, the funtion f(x) = (detX) mod 2 onsidered above turnsout to have eight distint olumns when Z = fx4; x5; x6; x7; x8; x9g; that's asurprisingly small number, onsidering that the truth table has 8 rows and64 olumns. From this fat we might be led to disover how to expand adeterminant by ofators of the �rst row,f(x) = x1^h1(x4; : : : ; x9) � x2^h2(x4; : : : ; x9) � x3^h3(x4; : : : ; x9);if we didn't already know suh a rule.When there are d � 2r di�erent olumns, we an think of f(x) as a funtionof y and h(z), where h takes eah binary vetor z1 : : : zn�k into one of thevalues f0; 1; : : : ; d � 1g. Thus (h1; : : : ; hr) is essentially an enoding of thedi�erent olumn types, and we hope to �nd very simple funtions h1, : : : , hr thatprovide suh an enoding. Moreover, if d is stritly less than 2r, the funtiong(y; h1; : : : ; hr) will have many don't-ares that may well derease its ost.The distint olumns might also suggest a funtion g for whih the h's havedon't-ares. For example, we an use g(y1; y2; h1; h2) = (y1�(h1^y2))^h2 whenall olumns are either (0; 0; 0; 0)T or (0; 0; 1; 1)T or (0; 1; 1; 0)T ; then the valueof h1(z) is arbitrary when z orresponds to an all-zero olumn. H. A. Curtishas explained how to exploit this idea when jY j = 1 and jZj = n� 1 [see IEEETransations C-25 (1976), 1033{1044℄.For a omprehensive disussion of deomposition tehniques, see Rihard M.Karp, J. Soiety for Industrial and Applied Math. 11 (1963), 291{335.Larger values of n. We've been onsidering only rather tiny examples ofBoolean funtions. Theorem S tells us that large, random examples are inher-ently diÆult; but pratial examples might well be highly nonrandom. So itmakes sense to searh for simpli�ations using heuristi methods.When n grows, the best ways urrently known for dealing with Booleanfuntions generally start with a Boolean hain|not with a huge truth table|and they try to improve that hain via \loal hanges." The hain an bespei�ed by a set of equations. Then, if an intermediate result is used in om-paratively few subsequent steps, we an try to eliminate it, temporarily makingthose subsequent steps into funtions of three variables, and reformulating thosefuntions in order to make a better hain when possible.For example, suppose the gate xi = xj Æ xk is used only one, in the gatexl = xi xm, so that xl = (xj Æ xk) xm. Other gates might already exist, bywhih we have omputed other funtions of xj , xk, and xm; and the de�nitionsof xj , xk, and xm may imply that some of the joint values of (xj ; xk; xm) areimpossible. Thus we might be able to ompute xl from other gates by doingjust one further operation. For example, if xi = xj ^ xk and xl = xi _ xm, andif the values xj _ xm and xk _ xm appear elsewhere in the hain, we an setxl = (xj_xm) ^ (xk_xm); this eliminates xi and redues the ost by 1. Or if,

25

26 COMBINATORIAL ALGORITHMS (F0C) 7.1.2say, xj ^ (xk�xm) appears elsewhere and we know that xjxkxm 6= 101, we anset xl = xm � (xj ^ (xk�xm)).If xi is used only in xl and xl is used only in xp, then gate xp depends on fourvariables, and we might be able to redue the ost by using our total knowledge offour-variable funtions, obtaining xp in a better way while eliminating xi and xl.Similarly, if xi appears only in xl and xp, we an eliminate xi if we �nd a betterway to evaluate two di�erent funtions of four variables, possibly with don't-ares and with other funtions of those four variables available for free. Again,we know how to solve suh problems, using the footprint method disussed above.When no loal hanges are able to derease the ost, we an also try loalhanges that preserve or even inrease the ost, in order to disover di�erentkinds of hains that might simplify in other ways. We shall disuss suh loalsearh methods extensively in Setion 7.10.Exellent surveys of tehniques for Boolean optimization, whih eletrialengineers all the problem of \multilevel logi synthesis," have been publishedby R. K. Brayton, G. D. Hahtel, and A. L. Sangiovanni-Vinentelli, Proeedingsof the IEEE 78 (1990), 264{300, and in the book Synthesis and Optimization ofDigital Ciruits by G. De Miheli (MGraw{Hill, 1994).Lower bounds. Theorem S tells us that nearly every Boolean funtion ofn � 12 variables is hard to evaluate, requiring a hain whose length exeeds 2n=n.Yet modern omputers, whih are built from logi iruits involving eletrisignals that represent thousands of Boolean variables, happily evaluate zillionsof Boolean funtions every miroseond. Evidently there are plenty of importantfuntions that an be evaluated quikly, in spite of Theorem S. Indeed, the proofof that theorem was indiret; we simply ounted the ases of low ost, so welearned absolutely nothing about any partiular examples that might arise inpratie. When we want to ompute a given funtion and we an only think of alaborious way to do the job, how an we be sure that there's no triky shortut?The answer to that question is almost sandalous: After deades of onen-trated researh, omputer sientists have been unable to �nd any expliit familyof funtions f(x1; : : : ; xn) whose ost is inherently nonlinear, as n inreases.The true behavior is 2n=n, but no lower bound as strong as n log log logn hasyet been proved! Of ourse we ould rig up arti�ial examples, suh as \thelexiographially smallest truth table of length 2n that isn't ahievable by anyBoolean hain of length b2n=n � 1"; but suh funtions are surely not expliit.The truth table of an expliit funtion f(x1; : : : ; xn) should be omputable inat most, say, 2n units of time for some onstant ; that is, the time needed tospeify all of the funtion values should be polynomial in the length of the truthtable. Under those ground rules, no family of single-output funtions is urrentlyknown to have a ombinational omplexity that exeeds 3n + O(1) as n ! 1.[See N. Blum, Theoretial Computer Siene 28 (1984), 337{345.℄The piture is not totally bleak, beause several interesting linear lowerbounds have been proved for funtions of pratial importane. A basi way toobtain suh results was introdued by N. P. Red'kin in 1970: Suppose we have

26

7.1.2 BOOLEAN EVALUATION 27an optimum hain of ost r for f(x1; : : : ; xn). By setting xn 0 or xn 1, weobtain redued hains for the funtions g(x1; : : : ; xn�1) = f(x1; : : : ; xn�1; 0) andh(x1; : : : ; xn�1) = f(x1; : : : ; xn�1; 1), having ost r�u if xn was used as an inputto u di�erent gates. Moreover, if xn is used in a \analizing" gate xi = xn Æ xk,where the operator Æ is neither � nor �, some setting of xn will fore xi tobe onstant, thereby further reduing the hain for g or h. Lower bounds on gand/or h therefore lead to a lower bound on f . (See exerises 77{81.)But where are the proofs of nonlinear lower bounds? Almost every problemwith a yes-no answer an be formulated as a Boolean funtion, so there's noshortage of expliit funtions that we don't know how to evaluate in lineartime, or even in polynomial time. For example, any direted graph G withverties fv1; : : : ; vmg an be represented by its adjaeny matrix X, where xij =[vi! vj ℄; thenf(x12; : : : ; x1m; : : : ; xm1; : : : ; xm(m�1)) = [G has a Hamiltonian path℄ (61)is a Boolean funtion of n = m(m � 1) variables. We would dearly love to beable to evaluate this funtion in, say, n4 steps. We do know how to ompute thetruth table for f in O(m! 2n) = 2n+O(pn log n) steps, sine only m! Hamiltonianpaths exist; thus f is indeed \expliit." But nobody knows how to evaluate f inpolynomial time, or how to prove that there isn't a 4n-step hain.For all we know, short Boolean hains for f might exist, for eah n. After all,Figs. 4 and 5 reveal the existene of �endishly lever hains even in the ases of4 and 5 variables. EÆient hains for all of the larger problems that we ever willneed to solve might well be \out there"|yet totally beyond our grasp, beausewe don't have time to �nd them. Even if an omnisient being revealed the simplehains to us, we might �nd them inomprehensible, beause the shortest proofof their orretness might be longer than the number of ells in our brains.Theorem S rules out suh a senario for most Boolean funtions. But fewerthan 2100 Boolean funtions will ever be of pratial importane in the entirehistory of the world, and Theorem S tells us zilh about them.In 1974, Larry Stokmeyer and Albert Meyer were, however, able to on-strut a Boolean funtion f whose omplexity is provably huge. Their f isn't\expliit," in the preise sense desribed above, but it isn't arti�ial either; itarises naturally in mathematial logi. Consider symboli statements suh as048+10156=1063 ; (62)8m9n(m<n+1) ; (63)8n9m(m+1<n) ; (64)8a8b(b�a+2)9ab(a<ab^ab<)) ; (65)8A8B(A�B,:9n(n2A^n62B_n2B^n62A)) ; (66)8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (67)8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (68)9P8a((a2P,a+362P),a<1000) ; (69)8A8B(8C8(C�A^�1_C�B^=0)(8n(n2C,n+162C),=1))):A�B) : (70)

27

28 COMBINATORIAL ALGORITHMS (F0C) 7.1.2Stokmeyer and Meyer de�ned a language L by using the 63-harater alphabet89:()�262+^_),<�=6=�>abdefghijklmnopqABCDEFGHIJKLMNOPQ0123456789and giving onventional meanings to these symbols. Strings of lowerase letterswithin the sentenes of L, like `ab' in (65), represent numeri variables, restritedto nonnegative integers; strings of upperase letters represent set variables,restrited to �nite sets of suh numbers. For example, (66) means, \For all�nite sets A and B, we have A = B if and only if there doesn't exist a number nthat is in A but not in B, or in B but not in A." Some of these statements aretrue; others are false. (See exerise 82.)All of the strings (62){(70) belong to L, but the language is atually quiterestrited: The only arithmeti operation allowed on a number is to add aonstant; we an write `a+13' but not `a+b'. The only relation allowed betweena number and a set is elementhood (2 or 62). The only relation allowed betweensets is equality (�). Furthermore all variables must be quanti�ed by 9 or 8.*Every sentene of L that has length k � n an be represented by a binaryvetor of length 6n, with zeros in the last 6(n� k) bits. Let f(x) be a Booleanfuntion of 6n variables suh that f(x) = 1 whenever x represents a true senteneof L, and f(x) = 0 whenever x represents a sentene that is false; the value of f(x)is unspei�ed when x doesn't represent a meaningful sentene. The truth tablefor suh a funtion f an be onstruted in a �nite number of steps, aordingto theorems of B�uhi and Elgot [Zeitshrift f�ur math. Logik und Grundlagen derMath. 6 (1960), 66{92; Transations of the Amer. Math. So. 98 (1961), 21{51℄.But \�nite" does not mean \feasible": Stokmeyer and Meyer proved thatC(f) > 2r�5 whenever n � 460 + :302r + 5:08 ln r and r > 36: (71)In partiular, we have C(f) > 2416 > 10125 when n = 618. A Boolean hain withthat many gates ould never be built, sine 10125 is a generous upper bound onthe number of protons in the universe. So this is a fairly small, �nite problemthat will never be solved.Details of Stokmeyer and Meyer's proof appear in JACM 49 (2002), 753{784. The basi idea is that the language L, though limited, is rih enough todesribe truth tables and the omplexity of Boolean hains, using fairly shortsentenes; hene f has to deal with inputs that essentially refer to themselves.*For further reading. Thousands of signi�ant papers have been written aboutnetworks of Boolean gates, beause suh networks underlie so many aspets oftheory and pratie. We have foused in this setion hiey on topis that arerelevant to omputer programming for sequential mahines. But other topishave also been extensively investigated, of primary relevane to parallel ompu-tation, suh as the study of small-depth iruits in whih gates an have anynumber of inputs (\unlimited fan-in"). Ingo Wegener's book The Complexity of* Tehnially speaking, the sentenes of L belong to \weak seond-order monadi logi withone suessor." Weak seond-order logi allows quanti�ation over �nite sets; monadi logiwith k suessors is the theory of unlabeled k-ary trees.

28

7.1.2 BOOLEAN EVALUATION 29Boolean Funtions (Teubner and Wiley, 1987) provides a good introdution tothe entire subjet.We have mostly onsidered Boolean hains in whih all binary operatorshave equal importane. For our purposes, gates suh as � or � are neither morenor less desirable than gates suh as ^ or _. But it's natural to wonder if wean get by with only the monotone operators ^ and _ when we are omputing amonotone funtion. Alexander Razborov has developed striking proof tehniquesto show that, in fat, monotone operators by themselves have inherently limitedapabilities. He proved, for example, that all AND-OR hains to determinewhether the permanent of an n � n matrix of 0s and 1s is zero or nonzeromust have ost n
(log n). [See Doklady Akademii Nauk SSSR 281 (1985), 798{801; Matematiheskie Zametki 37 (1985), 887{900.℄ By ontrast, we will see inSetion 7.5.1 that this problem, equivalent to \bipartite mathing," is solvablein only O(n2:5) steps. Furthermore, the eÆient methods in that setion anbe implemented as Boolean hains of only slightly larger ost, when we allownegation or other Boolean operations in addition to ^ and _. (Vaughan Pratthas alled this \the power of negative thinking.") An introdution to Razborov'smethods appears in exerises 85 and 86.EXERCISES1. [24 ℄ The \random" funtion in formula (6) orresponds to a Boolean hain ofost 4 and depth 4. Find a formula of depth 3 that has the same ost.2. [21 ℄ Show how to ompute (a) w � hxyzi and (b) w ^ hxyzi with formulas thathave depth 3 and ost 5.3. [M23 ℄ (B. I. Finikov, 1957.) If the Boolean funtion f(x1; : : : ; xn) is true atexatly k points, prove that L(f) < 2n+(k�2)2k�1. Hint: Think of k = 3 and n = 106.4. [M26 ℄ (P. M. Spira, 1971.) Prove that the minimum depth and formula length ofa Boolean funtion satisfy lgL(f) < D(f) � � lgL(f)+ 1, where � = 2= lg(32) � 3:419.Hint: Every binary tree with r � 3 internal nodes ontains a subtree with s internalnodes, where 13r � s < 23r.x 5. [21 ℄ The Fibonai threshold funtion Fn(x1; : : : ; xn) = hxF11 xF22 : : : xFn�1n�1 xFn�2n iwas analyzed in exerise 7.1.1{101, when n � 3. Is there an eÆient way to evaluate it?6. [20 ℄ True or false: A Boolean funtion f(x1; : : : ; xn) is normal if and only if itsatis�es the general distributive law f(x1; : : : ; xn) ^ y = f(x1 ^ y; : : : ; xn ^ y).7. [20 ℄ Convert the Boolean hain `x5 = x1 _ x4, x6 = �x2 _ x5, x7 = �x1 ^ �x3,x8 = x6 � x7' to an equivalent hain (x̂5; x̂6; x̂7; x̂8) in whih every step is normal.x 8. [20 ℄ Explain why (11) is the truth table of variable xk.9. [20 ℄ Algorithm L determines the lengths of shortest formulas for all funtions f ,but it gives no further information. Extend the algorithm so that it also provides atualminimum-length formulas like (6).x 10. [20 ℄ Modify Algorithm L so that it omputes D(f) instead of L(f).x 11. [22 ℄ Modify Algorithm L so that, instead of lengths L(f), it omputes upperbounds U(f) and footprints �(f) as desribed in the text.12. [15 ℄ What Boolean hain is equivalent to the minimum-memory sheme (13)?

29

30 COMBINATORIAL ALGORITHMS (F0C) 7.1.213. [16 ℄ What are the truth tables of f1, f2, f3, f4, and f5 in example (13)?14. [22 ℄ What's a onvenient way to ompute the 5n(n�1) truth tables of (17), giventhe truth table of g? (Use bitwise operations as in (15) and (16).)15. [28 ℄ Find short-as-possible ways to evaluate the following funtions using mini-mum memory: (a) S2(x1; x2; x3; x4); (b) S1(x1; x2; x3; x4); () the funtion in (18).16. [HM33 ℄ Prove that fewer than 2118 of the 2128 Boolean funtions f(x1; : : : ; x7)are omputable in minimum memory.x 17. [25 ℄ (M. S. Paterson, 1977.) Although Boolean funtions f(x1; : : : ; xn) annotalways be evaluated in n registers, prove that n + 1 registers are always suÆient. Inother words, show that there is always a sequene of operations like (13) to omputef(x1; : : : ; xn) if we allow 0 � j(i); k(i) � n.x 18. [35 ℄ Investigate optimumminimum-memory omputations for f(x1; x2; x3; x4; x5):How many lasses of �ve-variable funtions have Cm(f) = r, for r = 0, 1, 2, : : : ?19. [M22 ℄ If a Boolean hain uses n variables and has length r < n+ 2, prove that itmust be either a \top-down" or a \bottom-up" onstrution.x 20. [40 ℄ (R. Shroeppel, 2004.) A Boolean hain is analizing if it does not use theoperators � or �. Find the optimum ost, length, and depth of all 4-variable funtionsunder this onstraint. Does the footprint heuristi still give optimum results?21. [46 ℄ For how many four-variable funtions did the Harvard researhers disoveran optimum vauum-tube iruit in 1951?22. [21 ℄ Explain the hain for S3 in Fig. 6, by noting that it inorporates the hainfor S23 in Fig. 5. Find a similar hain for S2(x1; x2; x3; x4; x5).x 23. [23 ℄ Figure 6 illustrates only 16 of the 64 symmetri funtions on �ve elements.Explain how to write down optimum hains for the others.24. [47 ℄ Does every symmetri funtion f have Cm(f) = C(f)?x 25. [17 ℄ Suppose we want a Boolean hain that inludes all funtions of n variables:Let fk(x1; : : : ; xn) be the funtion whose truth table is the binary representation of k,for 0 � k < m = 22n. What is C(f0f1 : : : fm�1)?26. [25 ℄ True or false: If f(x0; : : : ; xn) = (x0^g(x1; : : : ; xn))�h(x1; : : : ; hn), where gand h are nontrivial Boolean funtions whose joint ost is C(gh), then C(f)=2+C(gh).x 27. [23 ℄ Can a full adder (22) be implemented in �ve steps using only minimummemory (that is, ompletely inside three one-bit registers)?28. [26 ℄ Prove that C(u0v0) = C(u00v00) = 5 for the two-output funtions de�ned by(u0v0)2 = (x+ y � (uv)2)mod 4; (u00v00)2 = (�x� y � (uv)2)mod 4:Use these funtions to evaluate [(x1 + � � �+ xn) mod 4=0℄ in fewer than 2:5n steps.29. [M28 ℄ Prove that the text's iruit for sideways addition (27) has depth O(logn).30. [M25 ℄ Solve the binary reurrene (28) for the ost s(n) of sideways addition.31. [21 ℄ If f(x1; : : : ; xn) is symmetri, prove that C(f) � 5n+O(n=logn).32. [HM16 ℄ Why does the solution to (30) satisfy t(n) = 2n +O(2n=2)?33. [HM22 ℄ True or false: If 1 � N � 2n, the �rst N minterms of fx1; : : : ; xng anall be evaluated in N +O(pN) steps, as n!1 and N !1.

30

7.1.2 BOOLEAN EVALUATION 31x 34. [22 ℄ A priority enoder has n = 2m � 1 inputs x1 : : : xn and m outputs y1 : : : ym,where (y1 : : : ym)2 = k if and only if k = maxfj j j = 0 or xj = 1g. Design a priorityenoder that has ost O(n) and depth O(m).35. [23 ℄ If n > 1, show that the onjuntions x1 ^ � � � ^ xk�1 ^ xk+1 ^ � � � ^ xn for1 � k � n an all be omputed from (x1; : : : ; xn) with total ost � 3n� 6.x 36. [M28 ℄ (R. W. Ladner and M. J. Fisher, 1980.) Let yk be the \pre�x" x1^� � �^xkfor 1 � k � n. Clearly C(y1 : : : yn) = n � 1 and D(y1 : : : yn) = dlgne; but we an'tsimultaneously minimize both ost and depth. Find a hain of optimum depth dlg nethat has ost < 4n.37. [M28 ℄ (Mar Snir, 1986.) Given n � m � 1, onsider the following algorithm:S1. [Upward loop.℄ For t 1, 2, : : : , dlgme, set xmin(m;2tk) x2t(k�1=2) ^xmin(m;2tk) for k � 1 and 2t(k � 1=2) < m.S2. [Downward loop.℄ For t dlgme � 1, dlgme � 2, : : : , 1, set x2t(k+1=2) x2tk ^ x2t(k+1=2) for k � 1 and 2t(k + 1=2) < m.S3. [Extension.℄ For k m+ 1, m+ 2, : : : , n, set xk xk�1 ^ xk.a) Prove that this algorithm solves the pre�x problem of exerise 36: It transforms(x1; x2; : : : ; xn) into (x1; x1 ^ x2; : : : ; x1 ^ x2 ^ � � � ^ xn).b) Let (m;n) and d(m;n) be the ost and depth of the orresponding Boolean hain.Prove that, if n is suÆiently large, (m;n) + d(m;n) = 2n� 2.) Given n, what is d(n) = min1�m�n d(m;n)? Show that d(n) < 2 lgn.d) Prove that there's a Boolean hain of ost 2n � 2 � d and depth d for the pre�xproblem whenever d(n) � d < n. (This ost is optimum, by exerise 81.)38. [25 ℄ In Setion 5.3.4 we studied sorting networks, by whih Ŝ(n) omparatormodules are able to sort n numbers (x1; x2; : : : ; xn) into asending order. If the inputsxj are 0s and 1s, eah omparator module is equivalent to two gates (x ^ y; x _ y);so a sorting network orresponds to a ertain kind of Boolean hain, whih evaluatesn partiular funtions of (x1; x2; : : : ; xn).a) What are the n funtions f1f2 : : : fn that a sorting network omputes?b) Show that those funtions ff1; f2; : : : ; fng an be omputed in O(n) steps with ahain of depth O(logn). (Hene sorting networks aren't asymptotially optimal,Booleanwise.)x 39. [M21 ℄ (M. S. Paterson and P. Klein, 1980.) Implement the 2m-way multiplexerMm(x1; : : : ; xm; y0; y1; : : : ; y2m�1) of (31) with an eÆient hain that simultaneouslyestablishes the upper bounds C(Mm) � 2n+O(pn) and D(Mm) � m+O(logm).40. [25 ℄ If n � k � 1, let fnk(x1; : : : ; xn) be the \k in a row" funtion,(x1 ^ � � � ^ xk) _ (x2 ^ � � � ^ xk+1) _ � � � _ (xn+1�k ^ � � � ^ xn):Show that the ost C(fnk) of this funtion is less than 4n� 3k.41. [M23 ℄ (Conditional-sum adders.) One way to aomplish binary addition (25)with depth O(logn) is based on the multiplexer trik of exerise 4: If (xx0)2+(yy0)2 =(zz0)2, where jx0j = jy0j = jz0j, we have either (x)2+(y)2 = (z)2 and (x0)2+(y0)2 = (z0)2,or (x)2+(y)2+1 = (z)2 and (x0)2+(y0)2 = (1z0)2. To save time, we an ompute both(x)2+(y)2 and (x)2+(y)2+1 simultaneously as we ompute (x0)2+(y0)2. Afterwards,when we know whether or not the less signi�ant part (x0)2 + (y0)2 produes a arry,we an use multiplexers to selet the orret bits for the most signi�ant part.

31

32 COMBINATORIAL ALGORITHMS (F0C) 7.1.2If this method is used reursively to build 2n-bit adders from n-bit adders, howmany gates are needed when n = 2m? What is the orresponding depth?42. [25 ℄ In the binary addition (25), let uk = xk ^ yk and vk = xk� yk for 0 � k < n.a) Show that zk = vk � k, where the arry bits k satisfyk = uk�1 _ (vk�1 ^ (uk�2 _ (vk�2 ^ (� � � (u1 ^ v0) � � �)))):b) Let Ukk = 0, V kk = 1, and Uk+1j = uk _ (vk ^ Ukj), V k+1j = vk ^ V kj , for k � j.Prove that k = Uk0 , and that Uki = Ukj _ (V kj ^ U ji), V ki = V kj ^ V ji for i � j � k.) Let h(m) = 2m(m�1)=2. Show that when n = h(m), the arries 1, : : : , n an allbe evaluated with depth (m+1)m=2 � lgn+p2 lgn and with total ost O(2mn).x 43. [28 ℄ A �nite state transduer is an abstrat mahine with a �nite input alpha-bet A, a �nite output alphabet B, and a �nite set of internal states Q. One of thosestates, q0, is alled the \initial state." Given a string � = a1 : : : an, where eah aj 2 A,the mahine omputes a string � = b1 : : : bn, where eah bj 2 B, as follows:T1. [Initialize.℄ Set j 1 and q q0.T2. [Done?℄ Terminate the algorithm if j > n.T3. [Output bj .℄ Set bj (q; aj).T4. [Advane j.℄ Set q d(q; aj), j j + 1, and return to step T2.The mahine has built-in instrutions that speify (q; a) 2 B and d(q; a) 2 Q for everystate q 2 Q and every harater a 2 A. The purpose of this exerise is to show that, ifthe alphabets A and B of any �nite state transduer are enoded in binary, the string� an be omputed from � by a Boolean hain of size O(n) and depth O(logn).a) Consider the problem of hanging a binary vetor a1 : : : an to b1 : : : bn by settingbj aj � [aj = aj�1= � � �= aj�k =1 and aj�k�1=0, where k is odd℄;assuming that a0 = 0. For example, � = 1100100100011111101101010 7! � =1000100100010101001001010. Prove that this transformation an be arried outby a �nite state transduer with jAj = jBj = jQj = 2.b) Suppose a �nite state transduer is in state qj after reading a1 : : : aj�1. Explainhow to ompute the sequene q1 : : : qn with a Boolean hain of ost O(n) and depthO(logn), using the onstrution of Ladner and Fisher in exerise 36. (From thissequene q1 : : : qn it is easy to ompute b1 : : : bn, sine bj = (qj ; aj).)) Apply the method of (b) to the problem in (a).x 44. [26 ℄ (R. W. Ladner and M. J. Fisher, 1980.) Show that the problem of binaryaddition (25) an be viewed as a �nite state transdution. Desribe the Boolean hainthat results from the onstrution of exerise 43 when n = 2m, and ompare it to theonditional-sum adder of exerise 41.45. [HM20 ℄ Why doesn't the proof of Theorem S simply argue that the number ofways to hoose j(i) and k(i) so that 1 � j(i); k(i) < i is n2(n+1)2 : : : (n+r�1)2?x 46. [HM21 ℄ Let �(n) = (n; b2n=n)=22n be the fration of n-variable Boolean fun-tions f(x1; : : : ; xn) for whih C(f) � 2n=n. Prove that �(n)! 0 rapidly as n!1.47. [M23 ℄ Extend Theorem S to funtions with n inputs and m outputs.48. [HM23 ℄ Find the smallest integer r = r(n) suh that (r�1)! 22n� 22r+1(n+r�1)2r,(a) exatly when 1 � n � 16; (b) asymptotially when n!1.

32

7.1.2 BOOLEAN EVALUATION 3349. [HM25 ℄ Prove that, as n ! 1, almost all Boolean funtions f(x1; : : : ; xn) haveminimum formula length L(f) > 2n= lgn� 2n+2=(lgn)2.50. [24 ℄ What are the prime impliants and prime lauses of the prime-number fun-tion (35)? Express that funtion in (a) DNF (b) CNF of minimum length.51. [20 ℄ What representation of the prime-number detetor replaes (37), if rows ofthe truth table are based on x5x6 instead of x1x2?52. [23 ℄ What hoies of k and l minimize the upper bound (38) when 5 � n � 16?53. [HM22 ℄ Estimate (38) when k = b2 lgn and l = d2k=(n� 3 lgn)e and n!1.54. [29 ℄ Find a short Boolean hain to evaluate all six of the funtions fj(x) =[x1x2x3x4 2Aj ℄, where A1 = f0010; 0101; 1011g, A2 = f0001; 1111g, A3 = f0011; 0111;1101g, A4 = f1001; 1111g, A5 = f1101g, A6 = f0101; 1011g. (These six funtionsappear in the prime-number detetor (37).) Compare your hain to the minterm-�rstevaluation sheme of Lupanov's general method.55. [34 ℄ Show that the ost of the 6-bit prime-deteting funtion is at most 14.x 56. [16 ℄ Explain why all funtions with 14 or more don't-ares in Table 3 have ost 0.57. [19 ℄ What seven-segment \digits" are displayed when (x1x2x3x4)2 > 9 in (45)?x 58. [30 ℄ A 4�4-bit S-box is a permutation of the 4-bit vetors f0000; 0001; : : : ; 1111g;suh permutations are used as omponents of well-known ryptographi systems suhas the Russian standard GOST 28147 (1989). Every 4�4-bit S-box orresponds toa sequene of four funtions f1(x1; x2; x3; x4), : : : , f4(x1; x2; x3; x4), whih transformx1x2x3x4 7! f1f2f3f4.Find all 4�4-bit S-boxes for whih C(f1) = C(f2) = C(f3) = C(f4) = 7.59. [29 ℄ One of the S-boxes satisfying the onditions of exerise 58 takes (0; : : : ; f) 7!(0; 6; 5; b; 3; 9; f; e; ; 4; 7; 8; d; 2; a; 1); in other words, the truth tables of (f1; f2; f3; f4)are respetively (179a; 63e8; 5b26; 3e29). Find a Boolean hain that evaluates thesefour \maximally diÆult" funtions in fewer than 20 steps.60. [23 ℄ (Frank Ruskey.) Suppose z = (x+y) mod 3, where x = (x1x2)2, y = (y1y2)2,z = (z1z2)2, and eah two-bit value is required to be either 00, 01, or 10. Compute z1and z2 from x1, x2, y1, and y2 in six Boolean steps.61. [34 ℄ Continuing exerise 60, �nd a good way to ompute z = (x+y) mod 5, usingthe three-bit values 000, 001, 010, 011, 100.62. [HM23 ℄ Consider a random Boolean partial funtion of n variables that has 2n\ares" and 2nd \don't-ares," where + d = 1. Prove that the ost of almost all suhpartial funtions exeeds 2n=n.63. [HM35 ℄ (L. A. Sholomov, 1969.) Continuing exerise 62, prove that all suhfuntions have ost � 2n=n(1 + O(n�1 logn)). Hint: There is a set of 2m(1 + k)vetors x1 : : : xk that intersets every (k �m)-dimensional subube of the k-ube.64. [25 ℄ (Magi Fifteen.) Two players alternately selet digits from 1 to 9, using nodigit twie; the winner, if any, is the �rst to get three digits that sum to 15. What's agood strategy for playing this game?x 65. [35 ℄ Modify the ti-ta-toe strategy of (47){(56) so that it always plays orretly.66. [20 ℄ Critiize the moves hosen in exerise 65. Are they always optimum?

33

34 COMBINATORIAL ALGORITHMS (F0C) 7.1.2x 67. [40 ℄ Instead of simply �nding one orret move for eah position in ti-ta-toe, wemight prefer to �nd them all. In other words, given x1 : : : x9o1 : : : o9, we ould try toompute nine outputs g1 : : : g9, where gj = 1 if and only if a move into ell j is amongX's best. For example, exlamation marks indiate all of the right moves for X in thefollowing typial positions:! ! !! ! !! ! ! ; O ! ; ! O !!! ; ! !O! ! ; X O! !! ; X O!! ! ; X ! !! O !! ! ! ; X !! O! ; X !! O; O ! !! X !! ! ! ; ! O !! X !! ! ; O X! !! ! ; ! XO ! ; ! X !! O !! ! ; ! XO ; ! X !! ! !! O ! :A mahine that hooses randomly among these possibilities is more fun to play againstthan a mahine that has only one �xed strategy.One attrative way to solve the all-good-moves problem is to use the fat thatti-ta-toe has eight symmetries. Imagine a hip that has 18 inputs x1 : : : x9o1 : : : x9and three outputs (; s;m), for \enter," \side," and \middle," with the propertythat the desired funtions gj an be omputed by hooking together eight of the hipsappropriately:g1 = (x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)_ (x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9);g2 = s(x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)_ s(x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7);g3 = (x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7)_ (x3x6x9x2x5x8x1x4x7o3o6o9o2o5o8o1o4o7);g4 = s(x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9)_ s(x7x4x1x8x5x2x9x6x3o7o4o1o8o5o2o9o6o3); : : :g9 = (x9x8x7x6x5x4x3x2x1o9o8o7o6o5o4o3o2o1)_ (x9x6x3x8x5x2x7x4x1o9o6o3o8o5o2o7o4o1);and g5 is the OR of the m outputs from all eight hips.Design suh a hip, using fewer than 2000 gates.68. [M25 ℄ Consider the n-bit � funtion �n(x1 : : : xn), whose value is the (x1 : : : xn)2thbit to the right of the most signi�ant bit in the binary representation of �. Does themethod of exerise 4.3.1{39, whih desribes an eÆient way to ompute arbitrary bitsof �, prove that C(�n) < 2n=n for suÆiently large n?69. [M24 ℄ Let the multilinear representation of f be�000 � �001xm � �010xj � �011xjxm � �100xi � �101xixm � �110xixj � �111xixjxm;where eah oeÆient �l is a funtion of the variables fx1; : : : ; xng n fxi; xj ; xmg.a) Prove that the pairs (58) are \good" if and only if the oeÆients satisfy�010�101 = �011�100; �101�110 = �100�111; and �110�011 = �111�010:b) For whih values (i; j;m) are the pairs bad, when f = (detX) mod 2? (See (60).)x 70. [M27 ℄ Let X be the 3 � 3 Boolean matrix (60). Find eÆient hains for theBoolean funtions (a) (detX) mod 2; (b) [perX > 0℄; () [detX > 0℄.x 71. [M26 ℄ Suppose f(x) is equal to 0 with probability p at eah point x = x1 : : : xn,independent of its value at other points.a) What is the probability that the pairs (58) are good?b) What is the probability that bad pairs (58) exist?) What is the probability that bad pairs (58) are found in at most t random trials?d) What is the expeted time to test ase (i; j;m), as a funtion of p, t, and n?

34

7.1.2 BOOLEAN EVALUATION 3572. [M24 ℄ Extend the previous exerise to the ase of partial funtions, where f(x) =0 with probability p, f(x) = 1 with probability q, and f(x) = � with probability r.x 73. [20 ℄ If bad pairs (58) exist for all (i; j;m) with m 6= i 6= j 6= m, show that theindeomposability of f an be dedued after testing only �n2� well-hosen triples (i; j;m).74. [25 ℄ Extend the idea in the previous exerise, suggesting a strategy for hoosingsuessive triples (i; j;m) when using the method of Shen, MKellar, and Weiner.75. [20 ℄ What happens when the text's deomposition proedure is applied to the\all-equal" funtion S0n(x1; : : : ; xn)?x 76. [M25 ℄ (D. Uhlig, 1974.) The purpose of this exerise is to prove the amazing fatthat, for ertain funtions f , the best hain to evaluate the Boolean funtionF (u1; : : : ; un; v1; : : : ; vn) = f(u1; : : : ; un) _ f(v1; : : : ; vn)osts less than 2C(f); hene funtional deomposition is not always a good idea.We let n = m + 2m and write f(i1; : : : ; im; x0; : : : ; x2m�1) = fi(x), where i isregarded as the number (i1 : : : im)2. Then (u1; : : : ; un) = (i1; : : : ; im; x0; : : : ; x2m�1),(v1; : : : ; vn) = (j1; : : : ; jm; y0; : : : ; y2m�1), and F (u; v) = fi(x) _ fj(y).a) Prove that a hain of ost O(n=logn)2 suÆes to evaluate the 2m + 1 funtionszl = x� (([l� i℄� [i� j ℄) ^ (x� y)); 0 � l � 2m;from given vetors i, j, x, and y; eah zl is a vetor of length 2m.b) Let gi(x) = fi(x)� fi�1(x) for 0 � i � 2m, where f�1(x) = f2m(x) = 0. Estimatethe ost of omputing the 2m + 1 values l = gl(zl), given the vetors zl, for0 � l � 2m.) Let 0l = l ^ ([i� j ℄� [l� i℄) and 00l = l ^ ([i� j ℄� [j > l℄). Prove thatfi(x) = 00 � 01 � � � � � 02m ; fj(y) = 000 � 001 � � � � � 002m :d) Conlude that C(F) � 2n=n+O(2n(logn)=n2). (When n is suÆiently large, thisost is de�nitely less than 2n+1=n, but funtions f exist with C(f) > 2n=n.)e) For larity, write out the hain for F when m = 1 and f(i; x0; x1) = (i ^ x0) _ x1.x 77. [35 ℄ (N. P. Red'kin, 1970.) Suppose a Boolean hain uses only the operationsAND, OR, or NOT; thus, every step is either xi = xj(i) ^ xk(i) or xi = xj(i) _ xk(i)or xi = �xj(i). Prove that if suh a hain omputes either the \odd parity" funtionfn(x1; : : : ; xn) = x1 � � � � � xn or the \even parity" funtion �fn(x1; : : : ; xn) = 1� x1 �� � � � xn, where n � 2, the length of the hain is at least 4(n� 1).78. [26 ℄ (W. J. Paul, 1977.) Let f(x1; : : : ; xm; y0; : : : ; y2m�1) be any Boolean funtionthat equals yk whenever (x1 : : : xm)2 = k 2 S, for some given set S � f0; 1; : : : ; 2m�1g;we don't are about the value of f at other points. Show that C(f) � 2kSk�2 wheneverS is nonempty. (In partiular, when S = f0; 1; : : : ; 2m � 1g, the multiplexer hain ofexerise 39 is asymptotially optimum.)79. [32 ℄ (C. P. Shnorr, 1976.) Say that variables u and v are \mates" in a Booleanhain if there is exatly one simple path between them in the orresponding binary treediagram. Two variables an be mates only if they are eah used only one in the hain;but this neessary ondition is not suÆient. For example, variables 2 and 4 are matesin the hain for S123 in Fig. 5, but they are not mates in the hain for S2.a) Prove that a Boolean hain on n variables with no mates has ost � 2n� 2.b) Prove that C(f) = 2n� 3 when f is the all-equal funtion S0n(x1; : : : ; xn).

35

36 COMBINATORIAL ALGORITHMS (F0C) 7.1.2x 80. [M27 ℄ (L. J. Stokmeyer, 1977.) Another notation for symmetri funtions issometimes onvenient: If � = a0a1 : : : an is any binary string, let S�(x) = a�x. Forexample, hx1x2x3i = S0011 and x1 � x2 � x3 = S0101 in this notation. Notie thatS�(0; x2; : : : ; xn) = S�0(x2; : : : ; xn) and S�(1; x2; : : : ; xn) = S0�(x2; : : : ; xn), where �0and 0� stand respetively for � with its last or �rst element deleted. Also,S�(f(x3; : : : ; xn); �f(x3; : : : ; xn); x3; : : : ; xn) = S0�0(x3; : : : ; xn)when f is any Boolean funtion of n� 2 variables.a) A parity funtion has a0 6= a1 6= a2 6= � � � 6= an. Assume that n � 2. Prove that ifS� is not a parity funtion and S0�0 isn't onstant, thenC(S�) � max(C(S�0)+2; C(S0�)+2; min(C(S�0)+3; C(S0�)+3; C(S0�0)+5)):b) What lower bounds on C(Sk) and C(S�k) follow from this result, when 0 � k � n?81. [23 ℄ (M. Snir, 1986.) Show that any hain of ost and depth d for the pre�xproblem of exerise 36 has + d � 2n� 2.x 82. [M23 ℄ Explain the logial sentenes (62){(70). Whih of them are true?83. [21 ℄ If there's a Boolean hain for f(x1; : : : ; xn) that ontains p analizing oper-ations, show that C(f) < (p+ 1)(n+ p=2).84. [M20 ℄ A monotone Boolean hain is a Boolean hain in whih every operator Æiis monotone. The length of a shortest monotone hain for f is denoted by C+(f). Ifthere's a monotone Boolean hain for f(x1; : : : ; xn) that ontains p ourrenes of ^and q ourrenes of _, show that C+(f) < min((p+ 1)(n+ p=2); (q + 1)(n+ q=2)).x 85. [M22 ℄ Let Mn be the set of all monotone funtions of n variables. If L is a familyof funtions ontained in Mn, letx t y =^fz 2 L j z � x _ yg and x u y =^fz 2 L j z � x ^ yg:We all L \legitimate" if it inludes the onstant funtions 0 and 1 as well as theprojetion funtions xj for 1 � j � n, and if x t y 2 L, x u y 2 L whenever x; y 2 L.a) When n = 3 we an write M3 = f00, 01, 03, 05, 11, 07, 13, 15, 0f, 33, 55, 17, 1f,37, 57, 3f, 5f, 77, ffg, representing eah funtion by its hexadeimal truth table.There are 215 families L suh that f00; 0f; 33; 55; ffg � L � M3; how many ofthem are legitimate?b) If A is a subset of f1; : : : ; ng, let dAe = Wa2A xa; also let d1e = 1. Suppose Ais a family of subsets of f1; : : : ; ng that ontains all sets of size � 1 and is losedunder intersetion; in other words, A\B 2 A whenever A 2 A and B 2 A. Provethat the family L = fdAe j A 2 A [f1gg is legitimate.) Let (xn+1; : : : ; xn+r) be a monotone Boolean hain (1). Suppose (x̂n+1; : : : ; x̂n+r)is obtained from the same Boolean hain, but with every operator ^ hanged to uand with every operator _ hanged to t, with respet to some legitimate family L.Prove that, for n+ 1 � l � n+ r, we must havex̂l � xl _ l_i=n+1fx̂i � (x̂j(i) _ x̂k(i)) j Æi = _g;
xl � x̂l _ l_i=n+1fx̂i � (x̂j(i) ^ x̂k(i)) j Æi = ^g:

36

7.1.2 BOOLEAN EVALUATION 3786. [HM37 ℄ A graph G on verties f1; : : : ; ng an be de�ned by N = �n2� Booleanvariables xuv for 1 � u < v � n, where xuv = [u���v in G℄. Let f be the funtionf(x) = [G ontains a triangle℄; for example, when n = 4, f(x12; x13; x14; x23; x24; x34) =(x12 ^ x13 ^ x23)_ (x12 ^ x14 ^ x24)_ (x13 ^ x14 ^ x34)_ (x23 ^ x24 ^ x34). The purposeof this exerise is to prove that the monotone omplexity C+(f) is
(n=logn)3.a) If uj ��� vj for 1 � j � r in a graph G, all S = ffu1; v1g; : : : ; fur; vrgg an r-family, and let �(S) = S1�i<j�r(fui; vig\fuj ; vjg) be the elements of its pairwiseintersetions. Say that G is r-losed if we have u���v whenever �(S) � fu; vg forsome r-family S. It is strongly r-losed if, in addition, we have j�(S)j � 2 for allr-families S. Prove that a strongly r-losed graph is also strongly (r + 1)-losed.b) Prove that the omplete bigraph Km;n is strongly r-losed when r > max(m;n).) Prove that a strongly r-losed graph has at most (r � 1)2 edges.d) Let L be the family of funtions f1g [fdGe j G is a strongly r-losed graph onf1; : : : ; ngg. (See exerise 85(b); we regard G as a set of edges. For example, whenthe edges are 1���3, 1���4, 2���3, 2���4, we have dGe = x13 _ x14 _ x23 _ x24.)Is L legitimate?e) Let xN+1, : : : , xN+p+q = f be a monotone Boolean hain with p ^-steps and q_-steps, and onsider the modi�ed hain x̂N+1, : : : , x̂N+p+q = f̂ based on thefamily L in (d). If f̂ 6= 1, show that 2(r� 1)3p+ (r� 1)2(n� 2) � �n3�. Hint: Usethe seond formula in exerise 85().f) Furthermore, if f̂ = 1 we must have r2q � 2r�1.g) Therefore p =
(n=logn)3. Hint: Let r � 6 lgn and apply exerise 84.87. [M20 ℄ Show that when nonmonotoni operations are permitted, the triangle fun-tion of exerise 86 has ost C(f) = O(nlg 7(logn)2) = O(n2:81). Hint: A graph has atriangle if and only if the ube of its adjaeny matrix has a nonzero diagonal.

37

38 ANSWERS TO EXERCISES 7.1.2SECTION 7.1.21. ((x1 _ x4) ^ x2) � (x1 _ x3).2. (a) (w � (x ^ y))� ((x� y) ^ z); (b) (w ^ (x _ y)) ^ ((x ^ y) _ z).3. [Doklady Akademii Nauk SSSR 115 (1957), 247{248.℄ Construt a k � n matrixwhose rows are the vetors x where f(x) = 1. By permuting and/or omplementingvariables, we may assume that the top row is 1 : : : 1 and that the olumns are sorted.Suppose there are l distint olumns. Then f = g ^ h, where g is the AND of theexpressions (xj�1 � xj) over all 1 < j � n suh that olumn j � 1 equals olumn j,and h is the OR of k minterms of length l, using one variable from eah group of equalolumns. For example, if n = 8 and if f is 1 at the k = 3 points 11111111, 00001111,00110111, then l = 4 and f(x) equals (x1 � x2) ^ (x3 � x4) ^ (x6 � x7) ^ (x7 � x8) ^((x1^x3^x5^x6)_ (�x1^ �x3^x5^x6)_ (�x1^x3^ �x5^x6)). The length of this formulain general is 2n+ (k � 2)l � 1, and we have l � 2k�1.Notie that, if k is large, we get shorter formulas by writing f(x) as a disjuntionf1(x) _ � � � _ fr(x), where eah fj has most dk=re 1s. ThusL(f) � minr�1 (r � 1 + (2n+ dk=r � 2e2dk=r�1e)r):4. The �rst inequality is obvious, beause a binary tree of depth d has at most1 + 2 + � � �+ 2d�1 = 2d � 1 internal nodes.The hint follows beause we an �nd a minimal subtree of size � br=3. Its size s isat most 1+2(br=3�1). Therefore we an write f = (g? f1: f0), where g is a subformulaof size s; f0 and f1 are the formulas of size r� s� 1 obtained when that subformula isreplaed by 0 and 1, respetively.Let d(r) = maxfD(f) j L(f) = r g. Sine the mux funtion has depth 2, and sinemax(s; r � s � 1) < d 2r3 e, we have d(r) � 2 + d(d 2r3 e � 1) for r � 3, and the resultfollows by indution on r. [Hawaii International Conf. System Si. 4 (1971), 525{527.℄5. Let g0 = 0, g1 = x1, and gj = xj ^ (xj�1 _ gj�2) for j � 2. Then Fn = gn _ gn�1,with ost 2n� 2 and depth n. [These funtions gj also play a prominent role in binaryaddition; see exerises 42 and 44 for ways to ompute them with depth O(logn).℄6. True: Consider the ases y = 0 and y = 1.7. x̂5 = x1_x4, x̂6 = x̂2^x̂5, x̂7 = x1_x3, x̂8 = x̂6�x̂7. (The original hain omputesthe \random" funtion (6); see exerise 1. The new hain omputes the normalizationof that funtion, namely its omplement.)8. The desired truth table onsists of bloks of 2n�k 0s alternating with bloks of2n�k 1s, as in (7). Therefore, if we multiply by 22n�k + 1 we get xk + (xk � 2n�k),whih is all 1s.9. When �nding L(f) = 1 in step L6, we an store g and h in a reord assoiatedwith f . Then a reursive proedure will be able to onstrut a minimum-length formulafor f from the respetive formulas for g and h.10. In step L3, use k = r�1 instead of k = r�1� j. Also hange L to D everywhere.11. The only subtle point is that j should derease in step U3; then we'll never have�(g)&�(h) 6= 0 when j = 0, so all ases of ost r�1 will be disovered before we beginto look at list r � 1.U1. [Initialize.℄ Set U(0) �(0) 0 and U(f) 1 for 1 � f < 22n�1. Thenset U(xk) �(xk) 0 and put xk into list 0, as in step L1. Also set

38

7.1.2 ANSWERS TO EXERCISES 39U(xj Æ xk) 1, set �(xj Æ xk) to an appropriate bit vetor of weight 1, andput xj Æ xk into list 1, for 1 � j < k � n and all �ve normal operators Æ.Finally set 22n�1 � 5�n2�� n� 1.U2. [Loop on r.℄ Do step U3 for r = 2, 3, : : : , while > 0.U3. [Loop on j and k.℄ Do step U4 for j = b(r � 1)=2, b(r � 1)=2 � 1, : : : , andk = r � 1� j, while j � 0.U4. [Loop on g and h.℄ Do step U5 for all g in list j and all h in list k; if j = k,restrit h to funtions that follow g in list k.U5. [Loop on f .℄ If �(g)&�(h) 6= 0, set u r�1 and v �(g)&�(h); otherwiseset u r and v �(g) j �(h). Then do step U6 for f = g & h, f = �g & h,f = g & �h, f = g j h, and f = g � h.U6. [Update U(f) and �(f).℄ If U(f) = 1, set � 1, �(f) v, and put finto list u. Otherwise if U(f) > u, set �(f) v and move f from list U(f)to list u. Otherwise if U(f) = u, set �(f) �(f) j v.12. x4 = x1 � x2, x5 = x3 ^ x2, x6 = x2 ^ �x4, x7 = x5 _ x6.13. f5 = 01010101 (x3); f4 = 01110111 (x2 _ x3); f3 = 01110101 ((�x1 ^ x2) _ x3);f2 = 00110101 (x1?x3:x2); f1 = 00010111 (hx1x2x3i).14. For 1 � j � n, �rst ompute t (g � (g � 2n�j)) & xj , t t � (t � 2n�j),where xj is the truth table (11); then for 1 � k � n and k 6= j, the desired truth tableorresponding to xj xj Æ xk is g � (t& ((xj Æ xk)� xj)).(The 5n(n � 1) masks (xj Æ xk) � xj are independent of g and an be omputedin advane. The same idea applies if we allow more general omputations of the formxj(i) xk(i) Æi xl(i), with 5n2(n� 1) masks (xk Æ xl)� xj .)15. Remarkably asymmetrial ways to ompute symmetrial funtions:(a) x1 x1 � x2;x3 x3 � x4;x1 x1 � x3;x2 x2 � x4;x3 x3 _ x2;x3 x3 ^ �x1:
(b) x1 x1 � x2;x2 x2 ^ �x1;x3 x3 � x4;x4 x4 ^ x1;x2 �x2 ^ x3;x2 x2 � x1;x2 x2 ^ �x4:

() x1 x1 � x2;x2 x2 � x3;x2 x2 _ x1;x1 x1 � x4;x1 x1 ^ x3;x2 x2 ^ �x1;x2 x2 � x4:16. A omputation that uses only � and omplementation produes nothing butaÆne funtions (see exerise 7.1.1{132). Suppose f(x) = f(x1; : : : ; xn) is a non-aÆnefuntion omputable in minimum memory. Then f(x) has the form g(Ax +) whereg(y1; y2; : : : ; yn) = g(y1 ^ y2; y2; : : : ; yn), for some nonsingular n � n matrix A of 0sand 1s, where x and are olumn vetors and the vetor operations are performedmodulo 2; in this formula the matrix A and vetor aount for all operations xi xi�xj and/or permutations and omplementations of oordinates that our after themost reent non-aÆne operation that was performed. We will exploit the fat thatg(0; 0; y3; : : : ; yn) = g(1; 0; y3; : : : ; yn).Let � and � be the �rst two rows of A; also let a and b be the �rst two elementsof . Then if Ax + � y (modulo 2) we have y1 = y2 = 0 if and only if � � x � a and� � x � b. Exatly 2n�2 vetors x satisfy this ondition, and for all suh vetors wehave f(x) = f(x� w), where Aw � (1; 0; : : : ; 0)T .Given �, �, a, b, and w, with � 6= (0; : : : ; 0), � 6= (0; : : : ; 0), � 6= �, and � � w � 1(modulo 2), there are 22n�2n�2 funtions f with the property that f(x) = f(x � w)

39

40 ANSWERS TO EXERCISES 7.1.2whenever � � xmod 2 = a and � � xmod 2 = b. Therefore the total number of funtionsomputable in minimum memory is at most 2n+1 (for aÆne funtions) plus(2n � 1)(2n � 2)22(2n�1)(22n�2n�2) < 22n�2n�2+3n+1:17. Let f(x1; : : : ; xn) = g(x1; : : : ; xn�1) � (h(x1; : : : ; xn�1) ^ xn) as in 7.1.1{(16).Representing h in CNF, form the lauses one by one in x0 and AND them into xn,obtaining h^xn. Representing g as a sum (mod 2) of onjuntions, form the suessiveonjuntions in x0 and XOR them into xn when ready.(It appears to be impossible to evaluate all funtions inside of n+1 registers if wedisallow the non-analizing operators � and �. But n + 2 registers learly do suÆe,even if we restrit ourselves to the single operator ^.)18. As mentioned in answer 14, we should extend the text's de�nition of minimum-memory omputation to allow also steps like xj(i) xk(i) Æi xl(i), with k(i) 6= j(i) andl(i) 6= j(i), beause that will give better results for ertain funtions that depend ononly four of the �ve variables. Then we �nd Cm(f) = (0; 1; : : : ; 13; 14) for respetively(2, 2, 5, 20, 93, 389, 1960, 10459, 47604, 135990, 198092, 123590, 21540, 472, 0) lassesof funtions : : : leaving 75,908 lasses (and 575,963,136 funtions) for whih Cm(f) =1beause they annot be evaluated at all in minimum memory. The most interestingfuntion of that kind is probably (x1 ^x2)_ (x2 ^x3)_ (x3 ^x4)_ (x4 ^x5)_ (x5 ^x1),whih has C(f) = 7 but Cm(f) = 1. Another interesting ase is (((x1 _ x2) � x3) _((x2 _ �x4)^x5))^ ((x1�x2)_x3 _x4), for whih C(f) = 8 and Cm(f) = 13. One wayto evaluate that funtion in eight steps is x6 = x1 _ x2, x7 = x1 _ x4, x8 = x2 � x7,x9 = x3 � x6, x10 = x4 � x9, x11 = x5 _ x9, x12 = x8 ^ x10, x13 = x11 ^ �x12.19. If not, the left and right subtrees of the root must overlap, sine ase (i) fails.Eah variable must our at least one as a leaf, by hypothesis. At least two variablesmust our at least twie as leaves, sine ase (ii) fails. But we an't have n+ 2 leaveswith r � n+ 1 internal nodes, unless the subtrees fail to overlap.20. Now Algorithm L (with `f = g� h' omitted in step L5) shows that some formulasmust have length 15; and even the footprint method of exerise 11 does no betterthan 14. To get truly minimum hains, the 25 speial hains for r = 6 in the text mustbe supplemented by �ve others that an no longer be ruled out, namely
1 12 234 1 12 23 4 1 12 23 4 1 12 234 1 12 234 ;

and when r = (7; 8; 9) we must also onsider respetively (653; 12387; 225660) additionalpotential hains that are not speial ases of the top-down and bottom-up onstrutions.Here are the resulting statistis, for omparison with Table 1:C(f) Class-es Fun-tions U(f) Class-es Fun-tions L(f) Class-es Fun-tions D(f) Class-es Fun-tions0 2 10 0 2 10 0 2 10 0 2 101 1 48 1 1 48 1 1 48 1 1 482 2 256 2 2 256 2 2 256 2 7 6843 7 940 3 7 940 3 7 940 3 59 170644 9 2336 4 9 2336 4 7 2048 4 151 476345 24 6464 5 21 6112 5 20 5248 5 2 966 30 10616 6 28 9664 6 23 8672 6 0 0

40

7.1.2 ANSWERS TO EXERCISES 417 61 18984 7 45 15128 7 37 11768 7 0 08 45 17680 8 40 14296 8 27 10592 8 0 09 37 7882 9 23 8568 9 33 11536 9 0 010 4 320 10 28 5920 10 16 5472 10 0 011 0 0 11 6 1504 11 30 6304 11 0 012 0 0 12 5 576 12 3 960 12 0 013 0 0 13 3 144 13 8 1472 13 0 014 0 0 14 2 34 14 2 96 14 0 015 0 0 15 0 0 15 4 114 15 0 0The two funtion lasses of depth 5 are represented by S24(x1; x2; x3; x4) and x1 �S2(x2; x3; x4); and those two funtions, together with S2(x1; x2; x3; x4) and the parityfuntion S13(x1; x2; x3; x4) = x1 � x2 � x3 � x4, have length 15. Also U(S24) =U(S13) = 14. The four lasses of ost 10 are represented by S14(x1; x2; x3; x4),S24(x1; x2; x3; x4), (x4? x1 � x2 � x3: hx1x2x3i), and [(x1x2x3x4)2 2f0; 1; 4; 7; 10; 13g℄.(The third of these, inidentally, is the omplement of (20), \Harvard's hardest ase.")21. (The authors stated that their table entries \should be regarded only as the mosteonomial operators known to the present writers.")22. �(x1x2x3x4x5) = 3 if and only if �(x1x2x3x4) 2 f2; 3g and �(x1x2x3x4x5) is odd.Similarly, S2(x1; x2; x3; x4; x5) = S3(�x1; �x2; �x3; �x4; �x5) inorporates S12(x1; x2; x3; x4):
+ + _ +_ ^+ ++ 1 23 3 41 24 5

S2 =

23. We need only onsider the 32 normal ases, as in Fig. 5, sine the omplement ofa symmetri funtion is symmetri. Then we an use reetion, like S12(x) = S34(�x),possibly together with omplementation, like S2345(x) = �S01(x) = �S45(�x), to deduemost of the remaining ases. Of ourse S1, S135, and S12345 trivially have ost 4. Thatleaves only S1234(x1; x2; x3; x4; x5) = (x1�x2)_ (x2�x3)_ (x3�x4)_ (x4�x5), whihis disussed for general n in exerise 79.24. As noted in the text, this onjeture holds for n � 5.25. It is 22n�1�n�1, the number of nontrivial normal funtions. (In any normal hainof length r that doesn't inlude all of these funtions, xj Æ xk will be a new funtionfor some j and k in the range 1 � j; k � n+ r and some normal binary operator Æ; sowe an ompute a new funtion with every new step, until we've got them all.)26. False. For example, if g = S13(x1; x2; x3) and h = S23(x1; x2; x3), then C(gh) = 5is the ost of a full adder; but f = S23(x0; x1; x2; x3) has ost 6 by Fig. 4.27. Yes: The operations `x2 x2 � x1, x1 x1 � x3, x1 x1 ^ �x2, x1 x1 � x3,x2 x2 � x3' transform (x1; x2; x3) into (z1; z0; x3).28. Let v0 = v00 = v� (x� y); u0 = ((v� y)�(x� y))�u, u00 = ((v� y)_ (x� y))�u.Thus we an set u0 = 0, v0 = x1, uj = ((vj�1�x2j+1)_(x2j�x2j+1))�uj�1 if j is odd,uj = ((vj�1�x2j+1)�(x2j �x2j+1))�uj�1 if j is even, and vj = vj�1� (x2j �x2j+1),obtaining (ujvj)2 = (x1 + � � � + x2j+1) mod 4 for 1 � j � bn=2. Set xn+1 = 0 if n iseven. The funtion [(x1 + � � �+ xn) mod 4=0℄ = �ubn=2 ^ �vbn=2 is thereby omputedin b5n=2 � 2 steps.

41

42 ANSWERS TO EXERCISES 7.1.2This onstrution is due to L. J. Stokmeyer, who proved that it is nearly optimal.In fat, the result of exerise 80 together with Figs. 4 and 5 shows that it is at mostone step longer than a best possible hain, for all n � 5.Inidentally, the analogous formula u000 = ((v � y) ^ (x� y))� u yields (u000v0)2 =((uv)2+x�y) mod 4. The simpler-looking funtion ((uv)2+x+y) mod 4 osts 6, not 5.29. To get an upper bound, assume that eah full adder or half adder inreases thedepth by 3. If there are ajd bits of weight 2j and depth 3d, we shedule at most dajd=3esubsequent bits of weights f2j ; 2j+1g and depth 3(d+ 1). It follows by indution thatajd � �dj�3�dn+ 4. Hene ajd � 5 when d � log3=2 n, and the overall depth is at most3 log3=2 n+3. (Curiously, the atual depth turns out to be exatly 100 when n = 107.)30. As usual, let �n denote the sideways addition of the bits in the binary represen-tation of n itself. Then s(n) = 5n� 2�n� 3blgn � 3.31. After sideways addition in s(n) < 5n steps, an arbitrary funtion of (zblgn; : : : ; z0)an be evaluated in � 2n=lgn steps at most, by Theorem L. [See O. B. Lupanov,Doklady Akademii Nauk SSSR 140 (1961), 322{325.℄32. Bootstrap: First prove by indution on n that t(n) � 2n+1.33. False, on a tehniality: If, say, N = pn, at least n steps are needed. A orretasymptoti formula N + O(pN) + O(n) an, however, be proved by �rst noting thatthe text's method gives N +O(pN) when N � 2n�1; otherwise, if blgN = n� k� 1,we an use O(n) operations to AND the quantity �x1 ^ � � � ^ �xk to the other variablesxk+1, : : : , xn, then proeed with n redued by k.(One onsequene is that we an ompute the symmetri funtions fS1; S2; : : : ; Sngwith ost s(n) + n+O(pn) = 6n+O(pn) and depth O(logn).)34. Say that an extended priority enoder has n + 1 = 2m inputs x0x1 : : : xn andm+ 1 outputs y0y1 : : : ym, where y0 = x0 _ x1 _ � � � _ xn. If Q0m and Q00m are extendedenoders for x00 : : : x0n and x000 : : : x00n, then Qm+1 works for x00 : : : x0nx000 : : : x00n if we de�ney0 = y00 _ y000 , y1 = y00, y2 = y1? y001 : y01, : : : , ym+1 = y1? y00m: y0m. If P 0m is an ordinarypriority enoder for x01 : : : x0n, we get Pm+1 for x01 : : : x0nx000 : : : x00n in a similar way.Starting with m = 2 and y2 = x3 _ (x1 ^ �x2), y1 = x2 _ x3, y0 = x0 _ x1 _ y1,this onstrution yields Pm and Qm of osts pm and qm, where p2 = 3, q2 = 5, andpm+1 = 3m+ pm + qm, qm+1 = 3m+ 1 + 2qm for m � 2. Consequently pm = qm �mand qm = 15 � 2m�2 � 3m� 4 � 3:75n.35. If n = 2m, ompute x1^x2, : : : , xn�1^xn, then reursively form x1^� � �^x2k�2^x2k+1^� � �^xn for 1 � k � m, and �nish in n more steps. If n = 2m�1, use this hainfor n + 1 elements; three steps an be eliminated by setting xn+1 1. [I. Wegener,The Complexity of Boolean Funtions (1987), exerise 3.25. The same idea an be usedwith assoiative and ommutative operator in plae of ^.℄36. Reursively onstrut Pn(x1; : : : ; xn) and Qn(x1; : : : ; xn) as follows, where Pn hasoptimum depth and Qn has depth � dlg ne+1: The ase n = 1 is trivial; otherwise Pnis obtained from Q0r(x1; : : : ; xr) and P 00s (xr+1; : : : ; xn), where r = dn=2e and s = bn=2,by setting yj = y0j for 1 � j � r, yj = y0r ^ y00j�r for r < j � n. And Qn is obtainedfrom either P 0r(x1 ^ x2; : : : ; xn�1 ^ xn) or P 0r(x1 ^ x2; : : : ; xn�2 ^ xn�1; xn) by settingy2j = y0j , y2j+1 = y0j ^ x2j+1 for 1 � j < s, and y2s = y0s, yn = y0r.To prove validity we must show also that output yn of Qn has depth dlg ne; notiethat Q2m+1 would fail if we began it with P 0m(x1^x2; : : : ; x2m�1^x2m) instead of withP 0m+1(x1 ^ x2; : : : ; x2m�1 ^ x2m; x2m+1), exept when m is a power of 2.

42

7.1.2 ANSWERS TO EXERCISES 43These alulations an be performed in minimum memory, setting xk(i) xj(i) ^xk(i) at step i for some indies j(i) < k(i). Thus we an illustrate the onstrutionwith diagrams analogous to the diagrams for sorting networks. For example,
P8 = (delay 3)(delay 3)(delay 3)(delay 3)(delay 2)(delay 2)(delay 1)(delay 0) ; Q8 = (delay 3)(delay 4)(delay 3)(delay 3)(delay 2)(delay 2)(delay 1)(delay 0) :

The osts pn and qn satisfy pn = bn=2+ qdn=2e+ pbn=2, qn = 2bn=2� 1+ pdn=2ewhen n > 1; for example, (p1; : : : ; p7) = (q1; : : : ; q7) = (0; 1; 2; 4; 5; 7; 9). Setting �pn =4n � pn and �qn = 3n � qn leads to simpler formulas, whih prove that pn < 4n andqn < 3n: �qn = �pdn=2e + [n even℄; �p4n = �p2n + �pn + 1, �p4n+1 = �p2n + �pn+1 + 1, �p4n+2 =�p2n+1+ �pn+1, �p4n+3 = �p4n+2+2. In partiular, 1+ �p2m = Fm+5 is a Fibonai number.[See JACM 27 (1980), 831{834. Slightly better hains are obtained if we use theotherwise-forbidden P 0bn=2 onstrution for Qn when n = 2m +1, if we replae P5 andP6 by Q5 and Q6, and if we then replae (P9; P10; P11; P17) by (Q9; Q10; Q11; Q17).℄Notie that this onstrution works in general if we replae `^' by any assoiativeoperator. In partiular, the sequene of pre�xes x1� � � � �xk for 1 � k � n de�nes theonversion from Gray binary ode to radix-2 integers, Eq. 7.2.1.1{(10).37. The ase m = 15, n = 16 is illustrated at the right.(a) Let xi::j denote the original value of xi ^ � � � ^ xj . Whenever thealgorithm sets xk xj ^ xk, one an show that the previous value of xkwas xj+1::k. After step S1, xk is xf(k)+1::k where f(k) = k & (k � 1) for1 � k < m and f(m) = 0. After step S2, xk is x1::k for 1 � k � m.(b) The ost of S1 is m � 1, the ost of S2 is m � 1 � dlgme, andthe ost of S3 is n � m. The �nal delay of xk is blg k + � k � 1 for1 � k < m, and it is dlgme + k �m for m � k � n. So the maximumdelay for fx1; : : : ; xm�1g turns out to be g(m) = m � 1 for m < 4,g(m) = blgm+blg m3 for m � 4. We have (m;n) = m+n�2�dlgme,d(m;n) = max(g(m); dlgme+ n�m). Hene (m;n) + d(m;n) = 2n� 2whenever n � m+ g(m)� dlgme.() A table of values reveals that d(n) = dlg ne for n < 8, and d(n) = blg(n �blg n + 3) + blg 23 (n � blg n + 3) � 1 for n � 8. Stating this another way, wehave d(n) > d(n � 1) > 0 if and only if n = 2k + k � 3 or 2k + 2k�1 + k � 3 forsome k > 1. The minimum ours for m = n when n < 8; otherwise it ours form = n� b 23 (n� blgn+ 3)+ 2� [n = 2k + k � 3 for some k℄.(d) Set m m(n; d), where m(n; d(n)) is de�ned in the previous sentene andm(n; d) = m(n� 1; d� 1) when d > d(n). [See J. Algorithms 7 (1986), 185{201.℄38. (a) From top to bottom, fk(x1; : : : ; xn) is an elementary symmetri funtion alsoalled the threshold funtion S�k(x1; : : : ; xn). (See exerise 5.3.4{28, Eq. 7.1.1{(90).)(b) After alulating fS1; : : : ; Sng in � 6n steps as in answer 33, we an apply themethod of exerise 37 to �nish in 2n further steps.But it is more interesting to design a Boolean hain spei�ally for the omputationof the 2m + 1 threshold funtions gk(x1; : : : ; xm) = [(x1 : : : xm)2� k ℄ for 0 � k � 2m.Sine [(x0x00)2 � (y0y00)2℄ = [(x0)2� (y0)2+1℄ _ ([(x0)2� (y0)2 ℄ ^ [(x00)2� (y00)2 ℄), adivide-and-onquer onstrution analogous to a binary deoder solves this problemwith a ost at most 2t(m).

43

44 ANSWERS TO EXERCISES 7.1.2Furthermore, if 2m�1 � n < 2m, the ost u(n) of omputing fg1; : : : ; gng by thismethod turns out to be 2n+O(pn), and it is quite reasonable when n is small:n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20u(n) = 0 1 2 4 7 7 8 12 15 17 19 19 20 21 22 27 32 34 36 36Starting with sideways addition, we an sort n Boolean values in s(n) + u(n) � 7nsteps. A sorting network, whih osts 2Ŝ(n), is better when n = 4 but loses whenn � 8. [See 5.3.4{(11); D. E. Muller and F. P. Preparata, JACM 22 (1975), 195{201.℄39. [IEEE Transations C-29 (1980), 737{738.℄ The identityMr+s(x1; : : : ; xr; xr+1; : : : ; xr+s; y0; : : : ; y2r+s�1) =Mr(x1; : : : ; xr; y00; : : : ; y02r�1);where y0j = W2s�1k=0 (dk ^ y2sj+k) and dk is the kth output of an s-to-2s deoder appliedto (xr+1; : : : ; xr+s), shows that C(Mr+s) � C(Mr)+2r+s+2r(2s�1)+t(s), where t(s)is the ost (30) of the deoder. The depth is D(Mr+s) = max(Dx(Mr+s);Dy(Mr+s)),where Dx and Dy denote the maximum depth of the x and y variables; we haveDx(Mr+s) � max(Dx(Mr); 1+ s+ dlg se+Dy(Mr)) and Dy(Mr+s) � 1+ s+Dy(Mr).Taking r = dm=2e and s = bm=2 yields C(Mm) � 2m+1 + O(2m=2), Dy(Mm) �m+ 1 + dlgme, and Dx(Mm) � Dy(Mm) + dlgme.40. We an, for example, let fnk(x) = Wn+1�kj=1 (lj(x) ^ rj+k�1(x)), wherelj(x) = �xj ; if j mod k = 0,xj ^ lj+1(x); if j mod k 6= 0, for 1 � j � n� (nmod k);rj(x) = � 1; if j mod k = 0,xj ^ rj�1(x); if j mod k 6= 0, for k � j � n:The ost is 4n� 3k � 3bnk � bn�1k + 2� (nmod k).A reursive solution is preferable when n is small or k is small: Observe that
fnk(x) = 8>><>>:

xn�k+1 ^ � � � ^ xk ^f(2n�2n)(n�k)(x1; : : : ; xn�k; xk+1; : : : ; xn); for k < n < 2k;fb(n+k)=2k(x1; : : : ; xb(n+k)=2) _fb(n+k�1)=2k(xb(n�k)=2+1; : : : ; xn); for n � 2k.The ost of this solution an be shown to equal n� 1 +Pn�kj=1 blg j when k � n < 2k,and it lies asymptotially between (m+�k�1)n+O(km) and (m+2�2=�k)n+O(km)as n!1, where m = blg k and 1 < �k = (k + 1)=2m � 2.A marriage of these methods is better yet; the optimum ost is unknown.41. Let (m) be the ost of omputing both (x)2 + (y)2 and (x)2 + (y)2 + 1 by theonditional-sum method when x and y have n = 2m bits, and let 0(m) be the ost ofthe simpler problem of omputing just (x)2+(y)2. Then (m+1) = 2(m)+6 �2m+2,0(m + 1) = (m) + 0(m) + 3 � 2m + 1. (Bit zn of the sum osts 1; but bits zk forn < k � 2n+ 1 ost 3, beause they have the form ? ak: bk where is a arry bit.) Ifwe start with n = 1 and (0) = 3, 0(0) = 2, the solution is (m) = (3m + 5)2m � 2,0(m) = (3m + 2)2m � m. But improved onstrutions for the ase n = 2 allow usto start with (1) = 11 and 0(1) = 7; then the solution is (m) = (3m + 72)2m � 2,0(m) = (3m+ 12)2m�m+1. In either ase the depth is 2m+1. [See J. Sklansky, IRETransations EC-9 (1960), 226{231.℄

44

7.1.2 ANSWERS TO EXERCISES 4542. (a) Sine hxkykki = uk _ (vk ^ k), we an use (26) and indution.(b) Notie that Uk+1k = uk and V k+1k = vk; use indution on j � i. [See A. Wein-berger and J. L. Smith, IRE Transations EC-5 (1956), 65{73; R. P. Brent and H. T.Kung, IEEE Transations C-31 (1982), 260{264.℄() First, for l = 1, 2, : : : , m�1, and for 1 � k � n, ompute V ki for all multiples iof h(l) in the range kl � i � kl+1, where kl = h(l)b(k � 1)=h(l) denotes the largestmultiple of h(l) that is less than k. For example, when l = 2 and k = 99, we omputeV 9996 , V 9988 = V 9996 ^ V 9688 , V 9980 = V 9988 ^ V 8880 , : : : , V 9964 = V 9972 ^ V 7264 ; this is a pre�xomputation using the values V 9996 , V 9688 , V 8880 , : : : , V 7264 that were omputed when l = 2.Using the method of exerise 36, step l adds at most l levels to the depth, and itrequires a total of (p1 + p2 + � � �+ p2l)n=2l = O(2ln) gates.Then, again for l = 1, 2, : : : , m� 1, and for 1 � k � n, ompute Uki for i = kl+1,using the \unrolled" formulaUkkl+1 = Ukkl _ _kl>j�kl+1h(l)nj (V kj+h(l) ^ U j+h(l)j):
For example, the unrolled formula when l = 3 and k = 99 isU9964 = U9996 _ (V 9996 ^ U9688) _ (V 9988 ^ U8880) _ (V 9980 ^ U8072) _ (V 9972 ^ U7264):Every suh Uki is a union of at most 2l terms, so it an be omputed with depth � lin addition to the depth of eah term. The total ost of this phase for 1 � k � n is(0 + 2 + 4 + � � �+ (2l�2))n=2l = O(2ln).The overall ost to ompute all neessary U 's and V 's is thereforePm�1l=1 O(2ln) =O(2mn). (Furthermore the quantities V k0 aren't atually needed, so we save theost of Pm�1l=1 h(l)p2l gates.) For example, when m = (2; 3; 4; 5) we obtain Booleanhains for the addition of (2; 8; 64; 1024)-bit numbers, respetively, with overall depths(3; 7; 11; 16) and osts (7; 64; 1254; 48470).[This onstrution is due to V. M. Khraphenko, Problemy Kibernetiki 19 (1967),107{122, who also showed how to ombine it with other methods so that the overallost will be O(n) while still ahieving depth lgn+O(plogn). However, his ombinedmethod is purely of theoretial interest, beause it requires n > 264 before the depthbeomes less than 2 lg n. Another way to ahieve small depth using the reurrenesin (b) an be based on the Fibonai numbers: The Fibonai method omputes thearries with depth log� n+O(1) � 1:44 lgn and ost O(n logn). For example, it yieldshains for binary addition with the following harateristis:n = 4 8 16 32 64 128 256 512 1024depth 6 7 9 10 12 13 15 16 18ost 24 71 186 467 1125 2648 6102 13775 30861See D. E. Knuth, The Stanford GraphBase (1994), 276{279.Charles Babbage found an ingenious mehanial solution to the analogous problemfor addition in radix 10, laiming that his design would be able to add numbers of arbi-trary preision in onstant time. For this to work he would have needed idealized, rigidomponents with vanishing learanes; the idea isn't appliable to modern omputers.See H. P. Babbage, Babbage's Calulating Engines (1889), 334{335.℄43. (a) Let A = B = Q = f0; 1g and q0 = 0. De�ne (q; a) = d(q; a) = �q ^ a.(b) The key idea is to onstrut the funtions d1(q) : : : dn�1(q), where d1(q) =d(q; a1) and dj+1(q) = d(dj(q); aj). In other words, d1 = d(a1) and dj+1 = dj Æ d(aj),

45

46 ANSWERS TO EXERCISES 7.1.2where d(a) is the funtion that takes q 7! d(q; a) and where Æ denotes omposition offuntions. Eah funtion dj an be enoded in binary notation, and Æ is an assoiativeoperation on these binary representations. Hene the funtions d1d2 : : : dn�1 are thepre�xes d(a1), d(a1)Æd(a2), : : : , d(a1)Æ� � �Æd(an�1); and q1q2 : : : qn = q0d1(q0) : : : dn�1(q0).() Represent a funtion f(q) by its truth table f0f1. Then the ompositionf0f1 Æ g0g1 is h0h1, where the funtions h0 = f0? g1: g0 and h1 = f1? g1: g0 are muxesthat an eah be omputed with ost 3 and depth 2. (The ombined ost C(h0h1) isonly 5, but we are trying to keep the depth small.) The truth table for d(a) is a0. Usingexerise 36, we an therefore ompute the truth tables d10d11d20d21 : : : d(n�1)0d(n�1)1with ost � 6pn�1 < 24n and depth � 2dlg(n � 1)e; then bj = �qj ^ aj = �d(j�1)0 ^ aj .(These ost estimates are quite onservative; substantial simpli�ations arise beauseof the 0s in the initial truth tables of d(aj) and beause many of the intermediate valuesdj1 are never used. For example, when n = 5 the atual ost is only 10, not 6p4+4 = 28;the atual depth is 4, not 1 + 2dlg 4e = 5.)44. The inputs may be regarded as the string x0y0 x1y1 : : : xn�1yn�1 whose elementsbelong to the four-letter alphabet A = f00; 01; 10; 11g; there are two states Q = f0; 1g,representing a possible arry bit, with q0 = 0; the output alphabet is B = f0; 1g; andwe have (q; xy) = q � x � y, d(q; xy) = hqxyi. In this ase, therefore, the �nite statetransduer is essentially desribed by a full adder.Only three of the four possible funtions of q our when we ompose the mappingsd(xy). We an enode them as u_ (q^v). The initial funtions d(xy) have u = x^y, v =x�y; and the omposition (uv)Æ(u0v0) is u00v00, where u00 = u0_(v0^u) and v00 = v^v0.When n = 4, for example, the hain has the following form, using the notation ofexerise 42: Uk+1k = xk ^ yk, V k+1k = xk � yk, for 0 � k < 4; U20 = U21 _ (V 21 ^ U10),U42 = U43 _ (V 43 ^ U32), V 42 = V 32 ^ V 43 ; U30 = U32 _ (V 32 ^ U20), U40 = U42 _ (V 42 ^ U20);z0 = V 10 , z1 = U10 � V 21 , z2 = U20 � V 32 , z3 = U30 � V 43 , z4 = U40 . The total ost is 20,and the maximum depth is 5.In general the ost will be 2n+3pn in the notation of exerise 36, beause we need2n gates for the initial u's and v's, then 3pn gates for the pre�x omputation; the n�1additional gates needed to form zj for 0 < j < n are ompensated by the fat that weneed not ompute V j0 for 1 < j � n. Therefore the total ost is 14 � 2m � 3Fm+5 + 3,learly superior to the onditional-sum method (whih has the same depth 2m+ 1):n = 2 4 8 16 32 64 128 256 512 1024ost of onditional-sum hain 7 25 74 197 492 1179 2746 6265 14072 31223ost of Ladner{Fisher hain 7 20 52 125 286 632 1363 2888 6040 12509[George Boole introdued his Algebra in order to show that logi an be understoodin terms of arithmeti. Eventually logi beame so well understood, the situationwas reversed: People like Shannon and Zuse began in the 1930s to design iruits forarithmeti in terms of logi, and sine then many approahes to the problem of paralleladdition have been disovered. The �rst Boolean hains of ostO(n) and depth O(logn)were devised by Yu. P. Ofman, Doklady Akademii Nauk SSSR 145 (1962), 48{51. Hishains were similar to the onstrution above, but the depth was approximately 4m.℄45. That argument would indeed be simpler, but it wouldn't be strong enough to provethe desired result. (Many hains with steps of fan-out 0 inate the simpler estimate.)The text's permutation-enhaned proof tehnique was introdued by J. E. Savage inhis book The Complexity of Computing (New York: Wiley, 1976), Theorem 3.4.1.

46

7.1.2 ANSWERS TO EXERCISES 4746. When r = 2n=n+O(1) we have ln(22r+1(n+r�1)2r=(r�1)!) = r ln r+(1+ ln 4)r+O(n) = (2n=n)(n ln 2 � lnn + 1 + ln 4) + O(n). So �(n) � (n=(4e))�2n=n+O(n=logn),whih approahes zero quite rapidly indeed when n > 4e.(In fat, (32) gives �(11) < 7:6� 107, �(12) < 4:2� 10�6, �(13) < 1:2� 10�38.)47. Restrit permutations to the (r � m)! ases where i� = i for 1 � i � n and(n+r+1�k)� is the kth output. Then we get (r �m)! (m;n; r) � 22r+1(n+r�1)2r inplae of (32). Hene, as in exerise 46, almost all suh funtions have ost exeeding2nm=(n+ lgm) when m = O(2n=n2).48. (a) Not surprisingly, this lower bound on C(n) is rather rude when n is small:n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16r(n) = 1 1 2 3 5 9 16 29 54 99 184 343 639 1196 2246 4229(b) The bootstrap method (see Conrete Mathematis x9.4) yieldsr(n) = 2nn �1 + lgn� 2� 1=ln 2n +O� lognn2 ��:49. The number of normal Boolean funtions that an be represented by a formula oflength � r is at most 5rnr+1gr, where gr is the number of oriented binary trees withr internal nodes. Set r = 2n= lgn � 2n+2=(lgn)2 in this formula and divide by 22n�1to get an upper bound on the fration of funtions with L(f) � r. The result rapidlyapproahes zero, by exerise 2.3.4.4{7, beause it is O((5�=16)2n= lgn) where � � 2:483.[J. Riordan and C. E. Shannon obtained a similar lower bound for series-parallelswithing networks in J. Math. and Physis 21 (1942), 83{93; suh networks are equiva-lent to formulas in whih only analizing operators are used. R. E. Krihevsky obtainedmore general results in Problemy Kibernetiki 2 (1959), 123{138, and O. B. Lupanovgave an asymptotially mathing upper bound in Prob. Kibernetiki 3 (1960), 61{80.℄50. (a) Using subube notation as in exerise 7.1.1{30, the prime impliants are00001�, (0001�1), 0100�1, 0111�1, 1010�1, 101�11, 00�011, 00�101, (01�111), 11�101,(0�1101), (1�0101), 1�1011, 0�0�11, �00101, (�01011), (�11101), where the parenthe-sized sububes are omitted in a shortest DNF. (b) Similarly, the prime lauses and ashortest CNF are given by 00111�, 01010�, 10110�, 0110��, 00�00�, 11�00�, 11�11�,(0�100�), (1�00��), 1�0�1�, (1����0), �0000�, (�1100�), �1���0, ��1��0, ���1�0, and(����00). (Thus the CNF is (x1_x2_�x3_�x4_�x5)^ (x1_�x2_x3_�x4_x5)^ � � � ^ (�x4_x6).)51. f = ([x5x6 2f01g℄^ [(x1x2x3x4)2 2f1; 3; 4; 7; 9; 10; 13; 15g℄)_ ([x5x6 2f10; 11g℄^[x1x2x3x4=0000℄) _ ([x5x6 2f11g℄ ^ [(x1x2x3x4)2 2f1; 2; 4; 5; 7; 10; 11; 14g℄).52. The small-n results are quite di�erent from those that work asymptotially:n k l (38)5 2 2 336 3 4 597 3 3 100
n k l (38)8 3 2 1699 3 2 27310 4 4 459

n k l (38)11 4 4 79112 4 3 132013 5 6 2337
n k l (38)14 5 5 403015 5 5 712616 5 4 12419(Optimizations like the fat that [x1x2 2f00; 01g℄ = �x1 usually redue the ost further.)53. First note that 2k=l � n � 3 lg n, hene mi � n � 3 lgn + 1 and 2mi = O(2n=n3).Also l = O(n) and t(n � k) = O(2n=n2). So (38) redues to l � 2n�k + O(2n=n2) =2n=(n� 3 lgn) +O(2n=n2).

47

48 ANSWERS TO EXERCISES 7.1.254. The greedy-footprint heuristi gives a hain of length 15:x5 = x1 � x2;x6 = x2 � x3;x7 = x1 ^ �x3;x8 = x4 ^ �x6;x9 = x4 ^ �x5;
x10 = x4 � x5;x11 = x7 _ x10;x12 = x6 � x11;x13 = �x10 ^ x12;f1 = x14 = x6 ^ �x11;

f2 = x15 = �x5 ^ x8;f3 = x16 = x4 ^ �x12;f4 = x17 = x1 ^ x8;f5 = x18 = x7 ^ x9;f6 = x19 = �x3 ^ x13:The minterm-�rst method orresponds to a hain of length 22, after we remove stepsthat are never used:x5 = �x1 ^ �x2;x6 = �x1 ^ x2;x7 = x1 ^ �x2;x8 = x1 ^ x2;x9 = �x3 ^ x4;x10 = x3 ^ �x4;x11 = x3 ^ x4;x12 = x5 ^ x9;

x13 = x5 ^ x10;x14 = x5 ^ x11;x15 = x6 ^ x9;x16 = x6 ^ x11;x17 = x7 ^ x9;x18 = x7 ^ x11;f5 = x19 = x8 ^ x9;
x20 = x8 ^ x11;f6 = x21 = x15 _ x18;f1 = x22 = x13 _ x21;f2 = x23 = x12 _ x20;x24 = x14 _ x16;f3 = x25 = x24 _ x19;f4 = x26 = x17 _ x20:

(The distributive law ould replae the omputation of x14, x16, and x24 by two steps.)Inidentally, the three funtions in the answer to exerise 51 an be omputed inonly ten steps:x5 = x2 _ x4;x6 = �x1 ^ x5;x7 = x2 ^ x4;x8 = x3 ^ �x7;
f3 = x9 = x6 � x8;x10 = x1 � x8;�f2 = x11 = x9 _ x10; x12 = x2 � x3;x13 = �x10 ^ x12;f1 = x14 = x4 � x13:

55. The optimum two-level DNF and CNF representations in answer 50 ost 53 and 43,respetively. Formula (37) osts 30, when optimized as in exerise 54. The alternativein exerise 51 osts only 17. But the atalog of optimum �ve-variable hains suggestsx7 = �x1 ^ x2;x8 = x3 � x7;x9 = x2 ^ x8;x10 = x1 � x9;
x11 = x5 ^ x10;x12 = x5 _ x10;x13 = x4 ^ �x11;x14 = x7 ^ x12;

x15 = x13 � x14;x16 = x5 ^ �x10;x17 = �x3 ^ x16; x18 = �x4 ^ x17;x19 = x6 ^ x15;x20 = x18 _ x19;
for this six-variable funtion. Is there a better way?56. If we are about at most two values, the funtion an be either onstant or xj or �xj .57. The truth tables for x5 through x17, in hexadeimal notation, are respetively 0ff0,2222, 33, 0d0d, 7777, 5d5d, 3e1, 6b94, 4914, 4804, 060b, 2020, 7007. So we get1010 = ; 1011 = ; 1012 = ; 1013 = ; 1014 = ; 1015 = :58. The truth tables of all ost-7 funtions with exatly eight 1s in their truth tablesare equivalent to either 0779, 169b, or 179a. Combining these in all possible waysyields 9656 solutions that are distint under permutation and/or omplementation offx1; x2; x3; x4g as well as under permutation and/or omplementation of ff1; f2; f3; f4g.

48

7.1.2 ANSWERS TO EXERCISES 4959. The greedy-footprint heuristi produes the following 17-step hain:x5 = x1 _ x4;x6 = x1 � x3;x7 = x2 � x4;x8 = �x4 ^ x6;x9 = x3 � x7;x10 = x2 _ x3;
x11 = x8 _ x9;x12 = x1 � x11;x13 = x5 ^ �x9;x14 = x5 ^ x12;x15 = x2 ^ x6;x16 = x2 ^ �x6;

x17 = �x2 ^ x3;f1 = x18 = x13 � x15;f2 = x19 = x11 ^ �x16;f3 = x20 = x12 � x17;f4 = x21 = x10 ^ �x14:The initial funtions all have large footprints, so we an't ahieve C(f1f2f3f4) = 28;but a slightly more diÆult S-box probably does exist.60. One way is u1 = x1 � y1, u2 = x2 � y2, v1 = y2 � u1, v2 = y1 � u2, z1 = v1 ^ �u2,z2 = v2 ^ �u1.61. Viewing these partial funtions of six variables as 4 � 16 truth tables, with rowsgoverned by x1y1, our knowledge of 4-bit funtions suggests good ways to ompute therows and leads to the following 25-step solution: t1 = x2^y2, t2 = x3^y3, t3 = x2_y2,t4 = x3_y3, t5 = t1�t2, t6 = t1_t2, t7 = t4^�t5, t8 = t3�t6, t9 = x2�y2, t10 = t4�t9,t11 = t5 ^ �t10, t12 = t3 � t4, t13 = x1 _ y1, t14 = t8 � t12, t15 = t13 ^ �t14, t16 = t4 � t7,t17 = t13 ^ �t16, t18 = t3 _ t4, t19 = x1 � y1, t20 = t19 ^ �t18, t21 = t8 � t15, t22 = t7 � t17,z1 = t11 _ t20, z2 = t21 ^ �t20, z3 = t22 ^ �t20. (Is there a better way?)62. There are � 2n2nd�22n suh funtions, at most � 2n2nd�t(n; r) of whih have ost � r.So we an argue as in exerise 46 to onlude from (32) that the fration with ost� r = b2n=n is at most 22r+1�2n(n+ r � 1)2r=(r � 1)! = 2�r lgn+O(r).63. [Problemy Kibernetiki 21 (1969), 215{226.℄ Put the truth table in a 2k�2n�k arrayas in Lupanov's method, and suppose there are j ares in olumn j, for 0 � j < 2n�k.Break that olumn into bj=m subolumns that eah have m ares, plus a possiblyempty subolumn at the bottom that ontains fewer than m of them. The hint tells usthat at most 2m+k olumn vetors suÆe to math the 0s and 1s of every subolumnthat has a spei�ed top row i0 and bottom row i1. With O(m2m+3k) operationswe an therefore onstrut O(2m+3k) funtions gt(x1; : : : ; xk) from the minterms offx1; : : : ; xkg, so that every subolumn mathes some type t. And for every type t we anonstrut funtions ht(xk+1; : : : ; xn) from the minterms of fxk+1; : : : ; xng, speifyingthe olumns that math t; the ost is at most Pj(bj=m + 1) � 2n=m + 2n�k.Finally, f = Wt(gt ^ht) requires O(2m+3k) additional steps. Choosing k = b2 lg n andm = dn� 9 lg ne makes the total ost at most (2n=n)(1 + 9n�1 lg n+O(n�1)).Of ourse we need to prove the hint, whih is due to E. I. Nehiporuk [DokladyAkad. Nauk SSSR 163 (1965), 40{42℄. In fat, 2m(1+dk ln 2e) vetors suÆe (see S. K.Stein, J. Combinatorial Theory A16 (1974), 391{397): If we hoose q = 2mdk ln 2evetors at random, not neessarily distint, the expeted number of untouhed sububesis � km�2m(1� 2�m)q < � km�2me�q2�m < 2m. (An expliit onstrution would be nier.)For extensive generalizations|tolerating a perentage of errors and speifying thedensity of 1s|see N. Pippenger, Mathematial Systems Theory 10 (1977), 129{167.64. It's exatly the game of ti-ta-toe, if we number the ells 6 1 87 5 32 9 4 as in an anient Chi-nese magi square. [Berlekamp, Conway, and Guy use this numbering sheme to presenta omplete analysis of ti-ta-toe in their book Winning Ways 3 (2003), 732{736.℄65. One solution is to replae the \defending" moves dj by \attaking" moves aj and\ounterattaking" moves j , and to inlude them only for orner ells j 2 f1; 3; 9; 7g.

49

50 ANSWERS TO EXERCISES 7.1.2Let j � k = (jk) mod 10; then j � 1 j � 2 j � 3j � 4 j � 5 j � 6j � 7 j � 8 j � 9gives us another way to look at the ti-ta-toe diagram, when j is a orner, beausej ? 10. The preise de�nition of aj and j is thenaj = mj ^ ((xj�3 ^ �(j�8)(j�9) ^ (oj�4�oj�6)) _ (xj�7 ^ �(j�6)(j�9) ^ (oj�2�oj�8))_ (mj�9 ^ ((mj�8 ^ xj�2 ^ (oj�3�oj�6)) _ (mj�6 ^ xj�4 ^ (oj�7�oj�8)))));j = dj ^ (xj�6 ^ oj�7) ^ (xj�8 ^ oj�3) ^ �dj�9;here dj = mj ^ �(j�2)(j�3) ^ �(j�4)(j�7) takes the plae of (51). We also de�neu = (x1 � x3)� (x7 � x9);v = (o1 � o3)� (o7 � o9);t = m2 ^m6 ^m8 ^m4 ^ (u _ �v); zj = 8><>:mj ^ �t; if j = 5,mj ^ �dj�9; if j 2 f1; 3; 9; 7g,mj ; if j 2 f2; 6; 8; 4g,in order to over a few more exeptional ases. Finally the sequene of rank-orderedmoves d5d1d3d9d7d2d6d8d4m5m1m3m9m7m2m6m8m4 in (53) is replaed by the se-quene a1a3a9a71397z5z1z3z9z7z2z6z8z4; and we replae (dj^ �d0j)_(mj^ ��m0j) in (55)by (aj^�a0j) _ (j^�0j) _ (zj^ �z0j) when j is a orner ell, otherwise simply by (zj^ �z0j).(Notie that this mahine is required to move orretly from all legal positions,even when those positions ouldn't arise after the mahine had made X's earlier moves.We essentially allow humans to play the game until they ask the mahine for advie.Otherwise great simpli�ations would be possible. For example, if X always goes �rst,it ould grab the enter ell and eliminate a huge number of future possibilities; fewerthan 8� 6� 4� 2 = 384 games ould arise. Even if O goes �rst, there are fewer than9 � 7 � 5 � 3 = 945 possible senarios against a �xed strategy. In fat, the atualnumber of di�erent games with the strategy de�ned here turns out to be 76 + 457, ofwhih 72 + 328 are won by the mahine and the rest belong to the at.)66. The Boolean hain in the previous answer ful�lls its mission of making orretmoves from all 4520 legal positions, where orretness was essentially de�ned to meanthat the worst-ase �nal outome is maximized. But a truly great ti-ta-toe playerwould do things di�erently. For example, from position OX the mahine takes theenter, OXX , and O probably draws by playing in a orner. But moving to OX X would giveO only two hanes to avoid defeat. [See Martin Gardner, Hexaexagons and OtherMathematial Diversions, Chapter 4.℄Furthermore the best move from a position like XO XO is to X XO XO instead of winningimmediately; then if the reply is X X OO XO , move to X X OO X XO . That way you still win, but withouthumiliating your opponent so badly.Finally, even the onept of a single \best move" is awed, beause a good playerwill hoose di�erent moves in di�erent games (as Babbage observed).It might be thought that programing a digital omputer to play tiktaktoe,or designing speial iruits for a tiktaktoe mahine,would be simple. This is true unless your aim is to onstrut a master robotthat will win the maximum number of games against inexperiened players.| MARTIN GARDNER, The Sienti� Amerian Book ofMathematial Puzzles & Diversions (1959)

50

7.1.2 ANSWERS TO EXERCISES 5167. The author's best e�ort, with 1734 gates, was onstruted by adapting the methodof Sholomov in answer 63: First divide the truth tables into 64 rows for o5x5o2o6o8o4and 4096 olumns for the other 12 input variables. Then plae appropriate 1s into\are" positions, in suh a way that the olumns have relatively few 1s. Then �nd asmall number of olumn types that math the ares in all olumns; 23 types suÆefor the funtion, 20 types for s, and 6 for m. We an then ompute eah output asW(gt ^ ht), sharing muh of the work of the minterm alulations within gt and ht.[This exerise was inspired by a disussion in John Wakerly's book Digital Design(Prentie{Hall, 3rd edition, 2000), x6.2.7. Inidentally, Babbage planned to hooseamong k possible moves by looking at N mod k, where N was the number of games wonso far; he didn't realize that suessive moves would tend to be highly orrelated until Nhanged. Muh better would have been to let N be the number of moves made so far.℄68. No. That method yields a \uniform" hain with a omprehensible struture, but itsost is 2n times a polynomial in n. A iruit with approximately 2n=n gates, onstrutedby Theorem L, exists but is more diÆult to fabriate. (Inidentally, C(�5) = 10.)69. (a) One an, for example, verify this result by trying all 64 ases.(b) If xm lies in the same row or olumn as xi, and also in the same row or olumnas xj , we have �111 = �101 = �110 = 0, so the pairs are good. Otherwise there areessentially three di�erent possibilities, all bad: If (i; j;m) = (1; 2; 4) then �101 = 0,�100 = x5x9 � x6x8, �011 = x9; if (i; j;m) = (1; 2; 6) then �010 = x4x9, �011 = x7,�100 = x5x9, �101 = x8; if (i; j;m) = (1; 5; 9) then �111 = 1, �110 = 0, �010 = x3x7.70. (a) x1^((x5^x9)�(x6^x8))� x2^((x6^x7)�(x4^x9))� x3^((x4^x8)�(x5^x7)).(b) x1^((x5^x9)_(x6^x8)) _ x2^((x6^x7)_(x4^x9)) _ x3^((x4^x8)_(x5^x7)).() Let y1 = x1^x5^x9, y2 = x1^x6^x8, y3 = x2^x6^x7, y4 = x2^x4^x9, y5 =x3^x4^x8, y6 = x3^x5^x7. The funtion f(y1; : : : ; y6) = [y1 + y2 + y3>y4 + y5 + y6 ℄an be evaluated in 15 further steps with two full adders and a omparator; but there isa 14-step solution: Let z1 = (y1�y2)�y3, z2 = (y1�y2)_(y1�y3), z3 = (y4�y5)�y6,z4 = (y4� y5)_ (y4� y6). Then f = (z1� (z2^ (�z4�(z1_z3))))^ (�z3_z4). Furthermorey1y2y3 = 111() y4y5y6 = 111; so there are don't-ares, leading to an 11-step solution:f = ((�z1^z3)_�z4) ^ z2. The total ost is 12 + 11 = 23.(The author knows of no way by whih a omputer ould disover suh an eÆienthain in a reasonable amount of time, given only the truth table of f . But perhaps aneven better hain exists.)71. (a) P (p) = 1 � 12p2 + 24p3 + 12p4 � 96p5 + 144p6 � 96p7 + 24p8, whih is 1132 +92 �2 � 3�4 � 24�6 + 24�8 when p = 12 + �.(b) There are N = 2n�3 sets of eight values (f0; : : : ; f7), eah of whih yields goodpairs with probability P (p). So the answer is 1� P (p)N.() The probability is �Nr �P (p)r(1� P (p))N�r that exatly r sets sueed; and insuh a ase t trials will �nd good pairs with probability (r=N)t. The answer is therefore1�PNr=0 �Nr �P (p)r(1� P (p))N�r(r=N)t = 1� P (p)t +O(t2=N).(d)PNr=0 �Nr �P (p)r(1�P (p))N�rPt�1j=0(r=N)j = (1�P (p)t)=(1�P (p))+O(t3=N).72. The probability in exerise 71(a) beomes P (p)+ (72p3� 264p4+432p5� 336p6+96p7)r+(60p2�240p3+456p4�432p5+144p6)r2+(�48p2+144p3�216p4+96p5)r3+(�36p2 + 24p3 + 12p4)r4 + (48p2 � 24p3)r5 � 12p2r6. If p = q = (1 � r)=2, this is(11 + 48r + 36r2 � 144r3 � 30r4 + 336r5 � 348r6 + 144r7 � 21r8)=32; for example, it's7739=8192 � 0:94 when r = 1=2.

51

52 ANSWERS TO EXERCISES 7.1.273. Consider the Horn lauses 1^2)3, 1^3)4, : : : , 1^(n � 1))n, 1^n)2, andi^j)1 for 1 < i < j � n. Suppose jZj > 1 in a deomposition, and let i be minimumsuh that xi 2 Z. Also let j be minimum suh that j > i and xj 2 Z. We annot havei > 1, sine i^j)1 in that ase. Thus i = 1, and xj 2 Z for 2 � j � n.74. Suppose we know that no nontrivial deomposition exists with x1 2 Z or � � � orxi�1 2 Z; initially i = 1. We hope to rule out xi 2 Z too, by hoosing j and mleverly. The Horn lauses i^j)m redue to Krom lauses j)m when i is asserted.So we essentially want to use Tarjan's depth-�rst searh for strong omponents, in adigraph with ars j)m that may or may not exist.When exploring from vertex j, �rst try m = 1, : : : , m = i � 1; if any suhimpliation i^j)m sueeds, we an eliminate j and all its predeessors from thedigraph for i. Otherwise, test if j)m for any suh eliminated vertex m. Otherwisetest unexplored verties m. Otherwise try verties m that have already been seen,favoring those near the root of the depth-�rst tree.In the example f(x) = (detX) mod 2, we would suessively �nd 1^2 6)3, 1^2)4,1^4)3, 1^3)5, 1^5)6, 1^6)7, 1^7)8, 1^8)9, 1^9)2 (now i 2); 2^3 6)1,2^3)4, 2^4 6)1, 2^4 6)5, 2^4)6, 2^6)1 (now 3, 4, and 6 are eliminated fromthe digraph for 2), 2^5)1 (and 5 is eliminated), 2^7 6)1, 2^7)3 (7 is eliminated),2^8)1, 2^9)1 (now i 3); 3^4 6)1, 3^4)2, 3^5)1, et.75. This funtion is 1 at only two points, whih are omplementary. So it is inde-omposable; yet the pairs (58) are never bad when n > 3. Every partition (Y;Z) willtherefore be a andidate for deomposition.Similarly, if f is deomposable with respet to (Y;Z), the indeomposable fun-tion f(x) � S0n(x) will at essentially like f in the tests. (A method to deal withapproximately deomposable funtions should probably be provided in a general-purposedeomposability tester.)76. (a) Let al = [i� l℄ for 0 � l � 2m. The ost is � 2t(m), as observed in answer38(b); and in fat, the ost an be redued to 2m+1 � 2m � 2 with �(m) depth.Furthermore the funtion [i� j ℄ = (�{1 ^ j1) _ ((i1 � j1) ^ [i2 : : : im� j2 : : : jm ℄) an beevaluated with 4m�3 gates. After omputing x�y, eah zl osts 2m+1+1 = O(n=logn).(b) Here the ost is at most C(g0) + � � �+ C(g2m) � (2m + 1)(22m=(2m + O(m)))by Theorem L, beause eah gl is a funtion of 2m inputs.() If i � j we have zl = x for l � i and zl = y for l > i; hene fi(x) = 0�� � �� iand fj(y) = j+1 � � � � � 2m . If i > j we have zl = y for l � i and zl = x for l > i;hene fj(y) = 0 � � � � � j and fi(x) = i+1 � � � � � 2m .(d) The funtions bl = [j < l℄ an be omputed for 0 � l � 2m in O(2m) steps, asin (a). So we an ompute F from (0; : : : ; 2m) with O(2m) further gates. Step (b)therefore dominates the ost, for large m.(e) a0 = 1, a1 = i, a2 = 0; b0 = 0, b1 = j, b2 = 1; d = [i� j ℄ = �{ _ j; ml = al � d,zl0 = x0 � (ml ^ (x0 � y0)), zl1 = x1 � (ml ^ (x1 � y1)), for l = 0; 1; 2; 0 = z01;1 = z10 ^ �z11; 2 = z20 _ z21; 0l = l ^ (d� al), 00l = l ^ (d� bl), for l = 0; 1; 2; and�nally F = (00 � 01 � 02) _ (000 � 001 � 002).The net ost (29 after obvious simpli�ations) is, of ourse, outrageous in suha small example. But one wonders if a state-of-the-art automati optimizer would beable to redue this hain to just 5 gates.[This result is a speial ase of more general theorems inMatematiheskie Zametki15 (1974), 937{944; London Math. So. Leture Note Series 169 (1992), 165{173.℄

52

7.1.2 ANSWERS TO EXERCISES 5377. Given a shortest suh hain for fn or �fn, let Ul = fi j l = j(i) or l = k(i)g be the\uses" of xl, and let ul = jUlj. Let ti = 1 if xi = xj(i) _xk(i), otherwise ti = 0. We willshow that there's a hain of length � r�4 that omputes either fn�1 or �fn�1, by usingthe following idea: If variable xm is set to 0 or 1, for any m, we an obtain a hainfor fn�1 or �fn�1 by deleting all steps of Um and modifying other steps appropriately.Furthermore, if xi = xj(i) Æ xk(i) and if either xj(i) or xk(i) is known to equal ti whenxm has been set to 0 or 1, then we an also delete the steps Ui. (Throughout thisargument, the letter m will stand for an index in the range 1 � m � n.)Case 1, um = 1 for some m. This ase annot our in a shortest hain. For if theonly use of xm is xi = �xm, eliminating this step would hange fn $ �fn; and otherwisewe ould set the values of x1, : : : , xm�1, xm+1, : : : , xn to make xi independent of xm,ontraditing xn+r = fn or �fn. Thus every variable must be used at least twie.Case 2, xl = �xm for some l and m, where um > 1. Then xi = xl Æ xk for some iand k, and we an set xm �ti to make xi independent of xk. Eliminating steps Um,Ul, and Ui then removes at least 4 steps, exept when ul = ui = 1 and um = 2 andxj = xm Æ xi; but in that ase we an also eliminate Uj .Case 3, um � 3 for some m, and not Case 2. If i; j; k 2 Um and i < j < k, setxm tk and remove steps i, j, k, Uk.Case 4, u1 = u = 2 = � � � = un = 2, and not Case 2. We may assume that the�rst step is x1 = x1 Æ x2, and that xl = x1 Æ xk for some k < l.Case 4.1, k > 0. Then k > 1. If uk = 1, set x1 tl and remove steps 1, k, l, Ul.Otherwise set x2 t1; this fores xk = �tl, and we an remove steps 1, k, l, Uk.Case 4.2, xl = x1 Æ xm. Then we must have m = 2; for if m > 2 we ouldset x2 t1, xm tl, and make xr independent of x1. Hene we may assume thatx1 = x1 ^ x2, x2 = x1 _ x2. Setting x1 0 allows us to remove U0 and U1; settingx1 1 allows us to remove U0 and U2. Thus we're done unless u1 = u2 = 1.If xp = �x1, set x1 0 and remove 1, 2, p, Up; if xq = �x2, set x1 1 and remove 1,2, q, Uq. Otherwise xp = x1 Æ xu and xq = x2 Æ xv , where xu and xv do not depend onx1 or x2. But that's impossible; it would allow us to set x3, : : : , xn to make xu = tp,then x2 1 to make xr independent of x1.[Problemy Kibernetiki 23 (1970), 83{101; 28 (1974), 4. With similar proofs,Red'kin showed that the shortest AND-OR-NOT hains for the funtions `x1 : : : xn <y1 : : : yn' and `x1 : : : xn = y1 : : : yn' have lengths 5n� 3 and 5n� 1, respetively.℄78. [SICOMP 6 (1977), 427{430.℄ Say that yk is ative if k 2 S. We may assume thatthe hain is normal and that kSk > 1; the proof is like Red'kin's in answer 77:Case 1, some ative yk is used more than one. Setting yk 0 saves at least twosteps and yields a hain for a funtion with kSk � 1 ative values.Case 2, some ative yk appears only in an AND gate. Setting yk 0 eliminates atleast two steps, unless this AND is the �nal step. But it an't be the �nal step, beauseyk = 0 makes the result independent of every other ative yj .Case 3, like Case 2 but with an OR or NOT-BUT or BUT-NOT gate. Setting yk for some appropriate onstant has the desired e�et.Case 4, like Case 2 but with XOR. The gate an't be �nal, sine the result shouldbe independent of yk when (x1 : : : xm)2 addresses a di�erent ative value yj . So we aneliminate two steps by setting yk to the funtion de�ned by the other input to XOR.79. (a) Suppose the ost is r < 2n � 2; then n > 1. If eah variable is used exatlyone, two leaves must be mates. Therefore some variable is used at least twie. Pruningit away produes a hain of ost � r � 2 on n� 1 variables, having no mates.

53

54 ANSWERS TO EXERCISES 7.1.2(Inidentally, the ost is at least 2n � 1 if every variable is used at least twie,beause at least 2n uses of variables must be onneted together in the hain.)(b) Notie that S0n = Vu��v(u� v) whenever the edges u���v form a free tree onfx1; : : : ; xng. So there are many ways to ahieve ost 2n� 3.Any hain of ost r < 2n�3 must have n > 2 and must ontain mates u and v. Byrenaming and possibly omplementing intermediate results, we an assume that u = 1,v = 2, and that f(x1; : : : ; xn) = g(x1 Æ h(x3; : : : ; xn); x2; : : : ; xn), where Æ is ^ or �.Case 1, Æ is AND. We must have h(0; : : : ; 0) = h(1; : : : ; 1) = 1, for otherwisef(x1; x2; y; : : : ; y) wouldn't depend on x1. Therefore f(x1; : : : ; xn) = h(x3; : : : ; xn) ^g(x1; x2; : : : ; xn) an be omputed by a hain of the same ost in whih 1 and 2 aremates and in whih the path between them has gotten shorter.Case 2, Æ is XOR. Then f = f0 _ f1, where f0(x1; : : : ; xn) = (x1�h(x3; : : : ; xn))^g(0; x2; : : : ; xn) and f1(x1; : : : ; xn) = (x1 � h(x3; : : : ; xn)) ^ g(1; x2; : : : ; xn). But f =S0n has only two prime impliants; so there are only four possibilities:Case 2a, f0 = f . Then we an replae x1 � h by 0, to get a hain of ost � r � 2for the funtion g(0; x2; : : : ; xn) = S0(n�1)(x2; : : : ; xn).Case 2b, f1 = f , is similar to Case 2a.Case 2, f0(x) = x1 ^ � � � ^xn and f1(x) = �x1 ^ � � �^ �xn. In this ase we must haveg(0; x2; : : : ; xn) = x2 ^ � � � ^ xn and g(1; x2; : : : ; xn) = �x2 ^ � � � ^ �xn. Replaing h by 1therefore yields a hain that omputes f in < r steps.Case 2d, f0(x) = �x1 ^ � � � ^ �xn and f1(x) = x1 ^ � � � ^ xn, is similar to Case 2.Applying these redutions repeatedly will lead to a ontradition. Similarly, onean show that C(S0Sn) = 2n� 2. [Theoretial Computer Siene 1 (1976), 289{295.℄80. [Mathematial Systems Theory 10 (1977), 323{336.℄ Without loss of generality,a0 = 0 and the hain is normal. De�ne Ul and ul as in answer 77. We may assume bysymmetry that u1 = max(u1; : : : ; un).We must have u1 � 2. For if u1 = 1, we ould assume further that xn+1 = x1 Æx2;hene two of the three funtions S�(0; 0; x3; : : : ; xn) = S�00 , S�(0; 1; x3; : : : ; xn) = S0�0 ,S�(1; 1; x3; : : : ; xn) = S00� would be equal. But then S� would be a parity funtion, orS0�0 would be onstant.Therefore setting x1 = 0 allows us to eliminate the gates of U1, giving a hain forS�0 with at least 2 fewer gates. It follows that C(S�) � C(S�0) + 2. Similarly, settingx1 = 1 proves that C(S�) � C(S0�) + 2.Three ases arise when we explore the situation further:Case 1, u1 � 3. Setting x1 = 0 proves that C(S�) � C(S�0) + 3.Case 2, U1 = fi; jg and operator Æj is analizing (namely, AND, BUT-NOT, NOT-BUT, or OR). Setting x1 to an appropriate onstant fores the value of xj and allowsus to eliminate U1 [Uj ; notie that i =2 Uj in an optimum hain. So either C(S�) �C(S�0) + 3 or C(S�) � C(S0�) + 3.Case 3, U1 = fi; jg and Æi = Æj = �. We may assume that xi = x1 � x2 andxj = x1 � xk. If uj = 1 and xl = xj � xp, we an restruture the hain by lettingxj = xk�xp, xl = x1�xj ; therefore we an assume that either uj 6= 1 or xl = xjÆxp forsome analizing operator Æ. If U2 = fi; j0g, we an assume similarly that xj0 = x2�xk0and that either uj0 = 1 or xl0 = xj0 Æ0 xp0 for some analizing operator Æ0. Furthermorewe an assume by symmetry that xj does not depend on xj0 .If xk does not depend on xi, let f(x3; : : : ; xn) = xk; otherwise let f(x3; : : : ; xn) bethe value of xk when xi = 1. By setting x1 = f(x3; : : : ; xn) and x2 = �f(x3; : : : ; xn),or vie versa, we make xi and xj onstant, and we obtain a hain for the nononstant

54

7.1.2 ANSWERS TO EXERCISES 55funtion S0�0 . We an, in fat, ensure that xl is onstant in the ase uj = 1. We laimthat at least �ve gates of this hain (inluding xi and xj) an be eliminated; heneC(S�) � C(S0�0) + 5. The laim is learly true if jUi [Uj j � 3.We must have jUi [Uj j > 1. Otherwise we'd have p = i, and xk would not dependon xi, so S� would be independent of x1 with our hoie of x2. Therefore jUi[Uj j = 2.Case 3a, Uj = flg. Then xl is onstant; we an eliminate xi, xj , and Ui [Uj [Ul.If the latter set ontains only two elements, then xq = xi Æ xl is also onstant and weeliminate Uq. Sine S0�0 isn't onstant, we won't eliminate the output gate.Case 3b, Ui � Uj , jUj j = 2. Then xq = xi Æxj for some q; we an eliminate xi, xj ,and Uj [Uq. The laim has been proved.(b) By indution, C(Sk) � 2n + min(k; n � k) � 3 � [n = 2k℄, for 0 < k < n;C(S�k) � 2n + min(k; n + 1 � k) � 4, for 1 < k < n. The easy ases are C(S0) =C(Sn) = C(S�1) = C(S�n) = n � 1; C(S�0) = 0. (Aording to Figs. 4 and 5, thesebounds are optimum for k = dn=2e when n � 5. All known results are onsistent withthe onjeture that C(Sk) = C(S�k) for k � n=2.)81. If some variable is used more than one, we an set it to a onstant, dereasing nby 1 and dereasing by � 2. Otherwise the �rst operation must involve x1, beausey1 = x1 is the only output that doesn't need omputation; making x1 onstant dereasesn by 1, by � 1, and d by � 1. [J. Algorithms 7 (1986), 185{201.℄82. (62) is false.(63) reads, \For all numbers m there's a number n suh that m < n + 1"; it istrue beause we an take m = n.(64) fails when n = 0 or n = 1, beause the numbers in these formulas are requiredto be nonnegative integers.(65) says that, if b exeeds a by 2 or more, there's a number ab between them. Ofourse it's true, beause we an let ab = a+ 1.(66) was explained in the text, and it too is true. Notie that `^' takes preedeneover `_' and `�' takes preedene over `,', just as `+' takes preedene over `�' and`<' over `^' in (65); these onventions redue the need for parentheses in sentenes of L.(67) says that, if A ontains at least one element n, it must ontain a minimumelement m (an element that's less than or equal to all of its elements). True.(68) is similar, but m is now a maximum element. Again true, beause all sets areassumed to be �nite.(69) asks for a set P with the property that [02P ℄ = [3 =2P ℄, [12P ℄ = [4 =2P ℄,: : : , [9992P ℄ = [1002 =2P ℄, [10002P ℄ 6= [1003 =2P ℄, [10012P ℄ 6= [1004 =2P ℄, et. It'strue if (and only if) P = fx j xmod 6 2 f1; 2; 3g and 0 � x < 1000g.Finally, the subformula 8n (n 2 C , n+ 1 =2 C) in (70) is another way of sayingthat C = ;. Hene the parenthesized formula after 8A8B is a triky way to say thatA = ; and B 6= ;. (Stokmeyer and Meyer used this trik to abbreviate statementsin L that involve long subformulas more than one.) Statement (70) is true beause anempty set doesn't equal a nonempty set.83. We an assume that the hain is normal. Let the analizing steps be y1, : : : , yp.Then yk = �k Æ �k and f = �p+1, where �k and �k are �'s of some subsets offx1; : : : ; xn; y1; : : : ; yk�1g; at most n+k�2 �'s are needed to ompute them, ombiningommon terms �rst. Hene C(f) � p+Pp+1k=1(n+ k � 2) = (p+ 1)(n+ p=2)� 1.84. Argue as in the previous answer, with _ or ^ in plae of �. [N. Alon and R. B.Boppana, Combinatoria 7 (1987), 15{16.℄

55

56 ANSWERS TO EXERCISES 7.1.285. (a) A simple omputer program shows that 13744 are legitimate and 19024 aren't.(An illegitimate family of this kind has at least 8 members; one suh is f00; 0f; 33; 55;ff; 15; 3f; 77g. Indeed, if the funtions x1_x2 (3f), x2_x3 (77), and x1^(x2_x3) (15)are present in a legitimate family L, then x2 t 15 = 33 j 15 = 37 must also be in L.)(b) The projetion and onstant funtions are obviously present. De�ne A� =T fB j B � A and B 2 Ag, or A� = 1 if no suh set B exists. Then we havedAe u dBe = dA \ Be and dAe t dBe = d(A [B)�e.() Abbreviate the formulas as x̂l � xl_W li=n+1 Æi, xl � x̂l_W li=n+1 �i, and argueby indution: If step l is an AND step, x̂l = x̂j u x̂k � x̂j ^ x̂k � (xj _W li=n+1 Æi) ^(xk_W li=n+1 Æi) = xl_W li=n+1 Æi; xl = xj ^xk � (x̂j _W l�1i=n+1 �i)^ (x̂k _W l�1i=n+1 �i) =(x̂j ^ x̂k) _W l�1i=n+1 �i, and x̂j ^ x̂k = x̂l _ �l. Argue similarly if step l is an OR step.86. (a) If S is an r-family ontained in the (r + 1)-family S0, learly �(S) � �(S0).(b) By the pigeonhole priniple, �(S) ontains elements u and v of eah part,whenever S is an r-family. And if �(S) = fu; vg, we ertainly have u���v.() The result is obvious when r = 1. There are at most r � 1 edges ontainingany given vertex u, by the \strong" property. And if u��� v, the edges disjoint fromfu; vg are strongly (r � 1)-losed; so there are at most (r � 2)2 of them, by indution.Thus there are at most 1 + 2(r � 2) + (r � 2)2 edges altogether.(d) Yes, by exerise 85(b), if r > 1, beause strongly r-losed graphs are losedunder intersetion. All graphs with � 1 edges are strongly r-losed when r > 1, beausethey have no r-families ontaining distint edges.(e) There are �n3� triangles xij ^xik ^xjk, only n�2 of whih are ontained in anyterm xuv of f̂ . Hene the minterms for at most (r� 1)2(n� 2) triangles are ontainedin f̂ , and the others must be ontained in one of the funtions �i = x̂i � (x̂j(i) ^ xk(i)).Suh a term has the form T = (dGeudHe)�(dGe^dHe) = (dGe^dHe)^dG \He, whereG and H are strongly r-losed; we will prove that T ontains at most 2(r�1)3 triangles.A triangle xij ^ xik ^ xjk in T must involve some variable (say xij) of dGe andsome variable (say xik) of dHe, but no variable of dG\He. There are at most (r� 1)2hoies for ij; and then there are at most 2(r � 1) hoies for k, sine H has at mostr � 1 edges touhing i and at most r � 1 edges touhing j.(f) There are 2n�1 omplete bigraphs obtained by oloring 1 red, oloring otherverties either red or blue, and letting u���v if and only if u and v have opposite olors.By the �rst formula in exerise 85(), the minterms B for every suh graph must beontained in one of the terms T = Æi = x̂i � (x̂j(i) _ xk(i)) = d(G [H)�e ^ dG [He.(For example, if n = 4 and verties (2; 3; 4) are (red, blue, blue), then B = �x12 ^ x13 ^x14 ^ x23 ^ x24 ^ �x34.) A minterm B is ontained in T if and only if, in the oloringfor B, some edge of (G[H)� has verties of opposite olors, but all edges of G[H aremonohromati. We will prove that T inludes at most 2n�rr2 suh B.Let G be any graph, and T = dG�e ^ dGe. The following (ineÆient) algorithman be used to �nd G�: If there's an r-family S with j�(S)j < 2, stop with G� = 1.Otherwise, if �(S) = fu; vg and u�+�v, add the edge u���v to G and repeat.At most 2n�r bipartite minterms B have monohromati fuj ; vjg for 1 � j � rwhen j�(S)j < 2. And when �(S) = fu; vg there are 2n�r�1 with monohromatifuj ; vjg and bihromati fu; vg. So we want to show that the algorithm for G takesfewer then 2r2 iterations when G is strongly r-losed.For k � 1, let uk ��� vk be the �rst new edge added to G that is disjoint fromfuj ; vjg for 1 � j < k. At most r suh edges exist, by \strongness"; and eah of them

56

7.1.2 ANSWERS TO EXERCISES 57is followed by at most 2r � 3 new edges that touh uj or vj . So the total number ofsteps to �nd G� is at most r(2r � 2) + 1 < 2r2.(g) Exerise 84 tells us that q < �p2�+(p+1)�n2�. Thus we have either 2(r�1)3p ��n3�� (r � 1)2(n� 2) or �p2�+ (p+ 1)�n2� > 2r�1=r2. Both lower bounds for p are112� n6 lgn�3�1 +O� log lognlogn �� when r = l lg� n6186624(lgn)4�m:[Noga Alon and Ravi B. Boppana, Combinatoria 7 (1987), 1{22, proeeded in thisway to prove, among other things, the lower bound
(n=logn)s for the number of ^'sin any monotone hain that deides whether or not G has a lique of �xed size s � 3.℄87. The entries of X3 are at most n2 when X is a 0{1 matrix. A Boolean hainwith O(nlg 7(logn)2) gates an implement Strassen's matrix multipliation algorithm4.6.4{(36), on integers modulo 2blgn2+1.

57

INDEX AND GLOSSARYWhen an index entry refers to a page ontaining a relevant exerise, see also the answer tothat exerise for further information. An answer page is not indexed here unless it refers to atopi not inluded in the statement of the exerise.0{1 matries, 29, 34, 57.2m-way multiplexer, 13, 31.3-variable funtions, 8{9.4-variable funtions, 2{9, 16{18, 26, 30, 33.5-variable funtions, v, 9{10, 30, 48.�x (sideways sum), v, 12, 30, 42, 44.� (irle ratio), as \random" example,2, 22, 32, 38.� funtion, 2, 22, 29, 34, 38.Addition modulo 3 and 5, 33.Addition modulo 4, 30.Adjaeny matrix, 27, 37.AÆne funtions, 39{40.Aiken, Howard Hathaway, 8.All-equal funtion (S0n), 35.Alon, Noga (OEL� DBP), 55, 57.Analysis of algorithms, 34.AND gates (^), 1.with vauum tubes, 8.AND-OR hains, 29, 36{37.AND-OR{NOT hains, 35, see alsoCanalizing hains.Approximately deomposable funtions, 52.Ashenhurst, Robert Lovett, 21, 24.Assoiative operators, 42, 43, 46.Asymptoti methods, 13{16, 32{33.Babbage, Charles, 20, 45, 50, 51.Babbage, Henry Provost, 45.Bakward-omputation priniple, 6.Bad pairs, 22{24, 34{35.Bell Telephone Laboratories, 19.Berlekamp, Elwyn Ralph, 49.Bigraph: A bipartite graph.Binary addition, 11{12, 31{32.Binary omparison funtion, 24, 51{53.Binary deoder, 13, 43.Binary reurrenes, 12, 13, 30, 43.Binary trees, 1, 2, 47.Binary-oded deimal digits, 18.Bipartite graphs, 24, 37, 51.Bipartite mathing, 29.Bitwise operations, 4{6, 30, 39, 56.Blum, Norbert Karl, 26.Boole, George, 46.Boolean hains, 0{57.AND-OR, 29, 36{37.AND-OR{NOT, 30, 35, 47.analizing, 30, 36, 47.de�nition of, 0.monotone, 29, 36{37.of 3 variables, 8{9.

of 4 variables, 2{9, 16{18, 26, 30, 33.of 5 variables, v, 9{10, 30, 48.of many variables, 13{16, 21{37.optimization of, 25{26, 52.with several outputs, 11{13, 16{21,25{26, 30{34.Bootstrapping, 42, 47.Boppana, Ravi Babu, 55, 57.Boros, Endre, 24.Bottom-up synthesis, 7{9, 30, 40.Brayton, Robert King, 26.Brent, Rihard Peire, 45.B�uhi, Julius Rihard, 28.BUT-NOT operator (�), 1, 4, 14.C(f), 1, 15{16, see Cost of a Booleanfuntion.C(f1 : : : fm), 11.C+(f), 36.Cm(f), 6{7, 30.Canalizing hains, 30, 36, 47.Canalizing operators, 27, 30, 40, 54.Cares, 33, 51, see also Don't-ares.Carry bits, 11, 31, 32, 46.Cat's game, 19, 21, 50.Ciruits, Boolean, 1, see Boolean hains.Cliques, 57.Closure under intersetion, 36.CNF: Conjuntive normal form, 1, 40, 48.Coloring of graphs, 24{25.Combinational omplexity, 1, 15{16, seeCost of a Boolean funtion.Comparator modules, 31.Comparison funtion, binary, 24, 51{53.Complement of a Boolean funtion,3{4, 11, 41.Complete bipartite graphs, 37, 56.Composition of funtions, 46.Conditional-sum adders, 31{32.Conseutive 1s, 31, 32.Control grids, 8.Conway, John Horton, 49.Cost of a Boolean funtion, 1, 11,15{16, 30{36.statistis, 5, 9, 40{41.Curtis, Herbert Allen, 0, 25.D(f), 3, seeDepth of a Boolean funtion.De Miheli, Giovanni, 26.Deomposition of funtions, 21{25, 34{35.Deomposition of partial funtions, 24{25.Depth of a Boolean funtion, 3, 4, 28{32, 36.statistis, 5, 9, 40{41.58

58

INDEX AND GLOSSARY 59Depth-�rst searh, 52.Determinants, 25, 34.Diagonalization, 28.Disjoint deomposition, 21{24.Distributive law, 29.Divide and onquer, 13, 42{45.DNF: Disjuntive normal form, 1, 48.Don't-ares, 18, 20, 24{26, 33, 35, 51.Eletrial engineers, 0, 1, 9, 11, 13, 18, 26.Elgot, Calvin Creston, 28.Evaluation of Boolean funtions, 0{57,see Boolean hains.Fan-in: The number of inputs to agate, 1, 8, 28.Fan-out: The number of uses of agate, 1, 8, 46.Fibonai, Leonardo, of Pisa (= Leonardo�lio Bonai Pisano), numbers, 43, 45.threshold funtions, 29.Finikov, Boris Ivanovih (Finikov,Boris Ivanoviq), 29.Finite state transduers, 32.Fisher, Mihael John, 31, 32.Five-variable funtions, v, 9{10, 30, 48.Footprints, iv, 4{5, 17, 18, 26, 29, 30, 48{49.Formula omplexity, see Length of aBoolean funtion.Four-variable funtions, 2{9, 16{18,26, 30, 33.Free trees, 54.Full adders, 11{12, 30, 41, 46, 51.Funtional deomposition, 21{25, 34{35.Games, see Ti-ta-toe.Gardner, Martin, 50.Gates, 1, 8.Generalized onsensus, 24.Good pairs, 22, 34{35.GOST ipher, 33.Gray, Frank, binary ode, 43.Greedy algorithm, 17.Greedy-footprint heuristi, 17{18, 26, 48{49.Gurvih, Vladimir Alexander (Gurviq,Vladimir Aleksandroviq), 24.Guy, Rihard Kenneth, 49.Hahtel, Gary Deane, 26.Half adders, 11{12.Hammer, P�eter L�aszl�o (= Peter Leslie =Iv�anesu, Petru Ladislav), 24.Harvard University ComputationLaboratory, 30, 41.Hellerman, Leo, 8{9.Hexadeimal notation for truth tables,9, 36, 48.Hight, Stuart Lee, 24.Horn, Alfred, lauses, 23, 52.

Ibaraki, Toshihide (), 24.If-then-else funtion (mux), 0, 38, 42, 44, 46.Inompatible olumns, 24.Internet, ii, iii.k-ary trees, 28.k-ubes, 33.k-in-a-row funtion, 31.Karp, Rihard Manning, 25.Khraphenko, Valerii Mikhailovih(Hrapqenko, Valeri� Miha�loviq),45.Klein, Peter, 31.Knuth, Donald Ervin (), i, iv,9, 19, 45.Kogan, Alexander (Kogan, Aleksandr�rieviq), 24.Krihevsky, Rafail Evseevih (Kriqevski�,Rafail Evseeviq), 47.Krom, Melven Robert, lauses, 52.Kung, Hsiang Tsung (), 45.L(f), 3, see Length of a Boolean funtion.Ladner, Rihard Emil, 31, 32.Legitimate latties of funtions, 36, 37.Length of a Boolean funtion, 3, 7, 29, 49.statistis, 5, 9, 40{41.Liang, Franklin Mark, iv, 9.Lo Shu magi square, 49.Loal optimizations, 25.Logi, 27{28, 36.Lower bounds on ombinational omplexity,7{8, 13{16, 26{28, 35{36.Lupanov, Oleg Borisovih (Lupanov, OlegBorisoviq), 14, 16, 33, 42, 47, 49.Magi Fifteen, 33.Magi square, 49.Majority operation, v, 8.Mathing, 23.Mates in a Boolean hain, 35.Matrix multipliation, 57.MKellar, Arhie Charles, 22, 24, 35.Median operation, v, 6, 29.Meyer, Albert Ronald da Silva, 27, 28, 55.Minimum-memory evaluation, 5{7,10, 29, 30, 43.Minterms, 13, 15, 30.MMIX, ii.Monadi logi: Logi with only unaryoperators, 27{28, 36.Monotone Boolean hains, 29, 36{37.Monotone omplexity, 10, 29, 36{37.Muller, David Eugene, 44.Multilevel logi synthesis, 26.Multilinear representation of a Booleanfuntion, 34, 40.Multiple outputs, 11{13, 16{21, 25{26,30{34.

59

60 INDEX AND GLOSSARYMultiplexer, 2-way, seeMux.2m-way, 13, 31, 35.Museum of Siene and Industry, 19.Mux (multiplex) operation, 0, 38, 42, 44, 46.NAND operation (^), 40.with vauum tubes, 8.Nehiporuk, Eduard Ivanovih (Neqiporuk,Eduard Ivanoviq), 49.NOR gates (_), 8{9.Normal Boolean funtions, 4, 6, 14,17, 29, 41, 53.Normalization, 4, 38.NOT-BUT operation (�), 1, 4.Notational onventions, v, 36.hxyzi, v, seeMedian operation.Noughts and rosses, see Ti-ta-toe.Ofman, Yuri Petrovih (Ofman, �ri�Petroviq), 46.Optimization of Boolean hains, 25{26, 52.Optimum Boolean evaluation, 7{9.OR gates (_), 1.with vauum tubes, 8.Oriented binary trees, 47.Overlapping subtrees, 1.Parallel addition, 12, 31{32, 46.Parallel omputation, 12, 28.Parity funtion, 2, 9, 35, 36, 41.Partial funtions, 17{18, 35.Paterson, Mihael Stewart, iv, 30, 31.Paul, Wolfgang Jakob, 35.Permanent of a matrix, 23, 29.Pi (�), as \random" example, 2, 22, 32, 38.Pi funtion, 2, 22, 29, 34, 38.Pigeonhole priniple, 56.Pippenger, Niholas John, 49.Pratt, Vaughan Ronald, 29.Pre�x problem, 31, 36.Pre�xes of strings, 36.Preparata, Frano Paolo, 44.Prime lauses, 33.Prime impliants, 33, 54.Prime-number funtion, 14, 33.Priority enoders, 31.r-losed graphs, 37.r-families of edges, 37.Randomization, 22, 34.Razborov, Alexander Alexandrovih(Razborov, AleksandrAleksandroviq), 29.Reurrene relations, 42, 44.binary, 12, 13, 30, 43.Reursive proedures, 38, 42.Red'kin, Nikolai Petrovih (Red~kin,Nikola� Petroviq), 11, 26, 35, 53.Registers, 5{7, 30.Riordan, John, 47.

S-boxes, 33.Sk1:::kt(x) notation, v, see Symmetrifuntions.Sangiovanni-Vinentelli, Alberto Luigi, 26.Savage, John Edmund, 46.Shnorr, Claus-Peter, 35.Shroeppel, Rihard Crabtree, iv, 30.Seond-order logi, 28.Seletion funtion, seeMux.Self-referene, 28, 60.Senea, Luius Ann�as, iii.Series-parallel swithing networks, 47.Seven-segment display, 16{18, 33.Shannon, Claude Elwood, Jr., 14, 46, 47.Shen, Vinent Yun-Shen (),22, 24, 35.Sholomov, Lev Abramovih (Xolomov,Lev Abramoviq), 33, 51.Sideways addition funtion (�x), v,12, 30, 42, 44.Sklansky, Jak, 44.Smith, John Lynn, 45.Snir, Mar (XIPY KXN), 31, 36.Sorting networks, 31, 43.Spira, Philip Martin, 29.Stanford GraphBase, ii, iii, 45.Stanford University InfoLab, v.Stein, Sherman Kopald, 49.Stokmeyer, Larry Joseph, 27, 28, 36, 42, 55.Storage aess funtion, 13.Straight-line omputation, see Booleanhains.Strassen, Volker, 57.Strong omponents, 52.Sububes, 33, 47.SuÆxes of strings, 36.Sun Mirosystems Laboratories, v.Symmetri funtions, v, 2{3, 8{10, 12,13, 30, 35, 36, 41, 42.Tarjan, Robert Endre, 52.Ternary Boolean funtions, 8{9.Thoreau, David Henry (= Henry David), 0.Threshold funtions, 43.Ti-ta-toe, 18{21, 33{34, 49.Top-down synthesis, 7{9, 30, 40.Topologial sorting, 1.Triangle funtion, 37.Trivial funtions, 41.Truth tables, 2, 4, 6, 9, 46.in hexadeimal notation, 9, 36, 48.of partial funtions, 18{20.two-dimensional, 14{15, 21{25, 49, 51.Uhlig, Dietmar, 35.Upper bounds on ombinational omplexity,14{16, 33, see also Footprints.

60

INDEX AND GLOSSARY 61Vauum-tube iruits, 8, 30.Vetor-valued Boolean funtions, 11, 25.Wakerly, John Franis, 51.Weak seond-order logi, 27{28, 36.Wegener, Ingo Werner, 28, 42.Weinberger, Arnold, 45.
Weiner, Peter Gallegos, 22, 24, 35.Wood, Frank W., 16.XOR gates (�), 1.Zuse, Konrad, 46.

61

