THE ART OF COMPUTER PROGRAMMING

 VOLUME 4 PRE-FASCICLE OC
A DRAFT OF SECTION 7.1.2: BOOLEAN EVALUATION

DONALD E. KNUTH Stanford University

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains current information about this book and related books.
 about The Stanford GraphBase, including downloadable software for dealing with the graphs used in many of the examples in Chapter 7.

See also http://www-cs-faculty.stanford.edu/~knuth/mmixware.html for downloadable software to simulate the MMIX computer.
Copyright © 2006 by Addison-Wesley
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher, except that the official electronic file may be used to print single copies for personal (not commercial) use.

Zeroth printing (revision 1), 24 March 2006

PREFACE

> Your mind should break free of custom, furiously seizing the bit and recklessly choosing its own path, where you would fear to ascend by yourself. - SENECA, De Tranquillitate Animi (c. 50)

This booklet contains draft material that I'm circulating to experts in the field, in hopes that they can help remove its most egregious errors before too many other people see it. I am also, however, posting it on the Internet for courageous and/or random readers who don't mind the risk of reading a few pages that have not yet reached a very mature state. Beware: This material has not yet been proofread as thoroughly as the manuscripts of Volumes 1,2 , and 3 were at the time of their first printings. And those carefully-checked volumes, alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous and/or obtrusive that you will be discouraged from reading the material carefully. I did try to make the text both interesting and authoritative, as far as it goes. But the field is so vast, I cannot hope to have surrounded it enough to corral it completely. Therefore I beg you to let me know about any deficiencies that you discover.

To put the material in context, this pre-fascicle contains Section 7.1.2 of a long, long chapter on combinatorial algorithms. Chapter 7 will eventually fill at least three volumes (namely Volumes $4 \mathrm{~A}, 4 \mathrm{~B}$, and 4 C), assuming that I'm able to remain healthy. It will begin with a short review of graph theory, with emphasis on some highlights of significant graphs in the Stanford GraphBase, from which I will be drawing many examples. Then comes Section 7.1: Boolean Techniques and Tricks, beginning with basic material in Section 7.1 .1 (see prefascicle 0b). Section 7.1.2, which you're about to read here, is concerned with the study of efficient Boolean function evaluation. Section 7.1.3 will deal with tricks and techniques of bitwise calculation; and Section 7.1.4 will discuss the representation of Boolean functions.

The next section, 7.2, is about generating all possibilities, and it begins with Section 7.2.1: Generating Basic Combinatorial Patterns. Fascicles for this section have already appeared on the Web and/or in print. Section 7.2 .2 will deal with backtracking in general. And so it will go on, if all goes well; an outline of the entire Chapter 7 as currently envisaged appears on the taocp webpage that is cited on page ii.

The topic of Boolean functions and bit manipulation can of course be interpreted so broadly that it encompasses the entire subject of computer programming. My original title for Section 7.1 - "Bit Fiddling" - was much more modest; I decided, however, that those words were a bit too low-brow. The real goal of this fascicle is to focus on concepts that appear at the lowest levels, on which we can erect significant superstructures. And even these apparently lowly notions turn out to be surprisingly rich, with explicit ties to Sections 2.3.4.4, 4.3.1, 4.6.4, and 5.3.4 of the first three volumes. I strongly believe in building up a firm foundation, so I have discussed Boolean topics much more thoroughly than I will be able to do with material that is newer or less basic. After typing the manuscript I was astonished to discover that I had come up with 87 exercises, even though - believe it or not - I had to eliminate quite a lot of the interesting material that appears in my files.

My notes on combinatorial algorithms have been accumulating for more than forty years, so I fear that in several respects my knowledge is woefully behind the times. Please look, for example, at the exercises that I've classed as research problems (rated with difficulty level 46 or higher), namely exercises 21 and 24 ; I've also implicitly mentioned or posed additional unsolved questions in the answers to exercises $17,40,55,61,63,70$, and 80 . Are those problems still open? Please let me know if you know of a solution to any of these intriguing questions. And of course if no solution is known today but you do make progress on any of them in the future, I hope you'll let me know.

I urgently need your help also with respect to some exercises that I made up as I was preparing this material. I certainly don't like to receive credit for things that have already been published by others, and most of these results are quite natural "fruits" that were just waiting to be "plucked." Therefore please tell me if you know who deserves to be credited, with respect to the ideas found in exercises $11,14,16,27,29,30,34$, and 40 , and/or the answer to exercise 38 . Furthermore I've cited unpublished results of Frank Liang, Mike Paterson, and Rich Schroeppel; do you know of any related publications?

The text presents an approach to synthesis based on so-called "footprints" of functions, which I haven't seen in the literature. Is this method new, or did I overlook some relevant papers?

I shall happily pay a finder's fee of $\$ 2.56$ for each error in this draft when it is first reported to me, whether that error be typographical, technical, or historical. The same reward holds for items that I forgot to put in the index. And valuable suggestions for improvements to the text are worth 32ϕ each. (Furthermore, if you find a better solution to an exercise, I'll actually reward you with immortal glory instead of mere money, by publishing your name in the eventual book:-)

Cross references to yet-unwritten material sometimes appear as '00'; this impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!
D. E. K.

Helpful hints. Readers of Section 7.1 .2 should ideally have already read (or at least skimmed) Section 7.1.1. In particular, they should not be shocked or puzzled by notations such as
i) $\nu\left(x_{1} x_{2} \ldots x_{n}\right)$ or $\nu\left(\left(x_{1} x_{2} \ldots x_{n}\right)_{2}\right)$ for the sum $x_{1}+x_{2}+\cdots+x_{n}$;
ii) $S_{k_{1} k_{2} \ldots k_{t}}(x)$ for the symmetric function that is true when $\nu x=k_{1}$ or k_{2} or \ldots or k_{t};
iii) $\left\langle x_{1} x_{2} \ldots x_{2 k-1}\right\rangle$ for the threshold function $S_{\geq k}$ that equals the median value of $\left\{x_{1}, x_{2}, \ldots, x_{2 k-1}\right\}$ (which is also the majority value).
Actually I used the notation $S_{k_{1}, k_{2}, \ldots, k_{t}}$ for symmetric functions in Section 7.1.1; but for Section 7.1.2 I've decided to drop the commas between k 's, at least in simple cases, because they just clutter things up in the present context.

I thank the Stanford University InfoLab and Sun Microsystems Laboratories for generously donating many hours of computer time on large, fast machines, thereby allowing me to investigate the Boolean functions of five variables.

By and large the minimization of switching components outweighs all other engineering considerations in designing economical logic circuits.

- H. A. CURTIS, A New Approach to the Design of Switching Circuits (1962)

He must be a great calculator indeed who succeeds.
Simplify, simplify.

- HENRY D. THOREAU, Walden; or, Life in the Woods (1854)

7.1.2. Boolean Evaluation

Our next goal is to study the efficient evaluation of Boolean functions, much as we studied the evaluation of polynomials in Section 4.6.4. One natural way to investigate this topic is to consider chains of basic operations, analogous to the polynomial chains discussed in that section.

A Boolean chain, for functions of n variables $\left(x_{1}, \ldots, x_{n}\right)$, is a sequence $\left(x_{n+1}, \ldots, x_{n+r}\right)$ with the property that each step combines two of the preceding steps:

$$
\begin{equation*}
x_{i}=x_{j(i)} \circ_{i} x_{k(i)}, \quad \text { for } n+1 \leq i \leq n+r \tag{1}
\end{equation*}
$$

where $1 \leq j(i)<i$ and $1 \leq k(i)<i$, and where \circ_{i} is one of the sixteen binary operators of Table 7.1.1-1. For example, when $n=3$ the two chains

$$
\begin{array}{lll}
x_{4}=x_{1} \wedge x_{2} \\
x_{5}=\bar{x}_{1} \wedge x_{3} \tag{2}\\
x_{6}=x_{4} \vee x_{5} & \text { and } & \\
x_{4}=x_{2} \oplus x_{3} \\
x_{5}=x_{1} \wedge x_{4} \\
x_{6}=x_{3} \oplus x_{5}
\end{array}
$$

both evaluate the "mux" or "if-then-else" function $x_{6}=\left(x_{1}\right.$? $\left.x_{2}: x_{3}\right)$, which takes the value x_{2} or x_{3} depending on whether x_{1} is 1 (true) or 0 (false).
(Notice that the left-hand example in (2) uses the simplified notation ' $x_{5}=$ $\bar{x}_{1} \wedge x_{3}$ ' to specify the NOT-BUT operation, instead of the form ' $x_{5}=x_{1} \bar{\subset} x_{3}$ ' that appears in Table 7.1.1-1. The main point is that, regardless of notation, every step of a Boolean chain is a Boolean combination of two prior results.)

Boolean chains correspond naturally to electronic circuits, with each step in the chain corresponding to a "gate" that has two inputs and one output. Electrical engineers traditionally represent the Boolean chains of (2) by circuit diagrams such as

and

They need to design economical circuits that are subject to various technological constraints; for example, some gates might be more expensive than others, some outputs might need to be amplified if reused, the layout might need to be planar or nearly so, some paths might need to be short. But our chief concern in this book is software, not hardware, so we don't have to worry about such things. For our purposes, all gates have equal cost, and all outputs can be reused as often as desired. (Jargonwise, our Boolean chains boil down to circuits in which all gates have fan-in 2 and unlimited fan-out.)

Furthermore we shall depict Boolean chains as binary trees such as

and

instead of using circuit diagrams like (3). Such binary trees will have overlapping subtrees when intermediate steps of the chain are used more than once. Every internal node is labeled with a binary operator; external nodes are labeled with an integer k, representing the variable x_{k}. The label ' ©)' in the left tree of (4) stands for the NOT-BUT operator, since $\bar{x} \wedge y=[x<y]$; similarly, the BUT-NOT operator, $x \wedge \bar{y}$, can be represented by the node label ' Θ '.

Several different Boolean chains might have the same tree diagram. For example, the left-hand tree of (4) also represents the chain

$$
x_{4}=\bar{x}_{1} \wedge x_{3}, \quad x_{5}=x_{1} \wedge x_{2}, \quad x_{6}=x_{5} \vee x_{4}
$$

Any topological sorting of the tree nodes yields an equivalent chain.
Given a Boolean function f of n variables, we often want to find a Boolean chain such that $x_{n+r}=f\left(x_{1}, \ldots, x_{n}\right)$, where r is as small as possible. The combinational complexity $C(f)$ of a function f is the length of the shortest chain that computes it. To save excess verbiage, we will simply call $C(f)$ the "cost of f." The max function in our examples above has cost 3 , because one can show by exhaustive trials that it can't be produced by any Boolean chain of length 2.

The DNF and CNF representations of f, which we studied in Section 7.1.1, rarely tell us much about $C(f)$, since substantially more efficient schemes of
calculation are usually possible. For example, in the discussion following 7.1.1(30) we found that the more-or-less random function of four variables whose truth table is 1100100100001111 has no DNF expression shorter than

$$
\begin{equation*}
\left(\bar{x}_{1} \wedge \bar{x}_{2} \wedge \bar{x}_{3}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{3} \wedge \bar{x}_{4}\right) \vee\left(x_{2} \wedge x_{3} \wedge x_{4}\right) \vee\left(x_{1} \wedge x_{2}\right) \tag{5}
\end{equation*}
$$

This formula corresponds to a Boolean chain of 10 steps. But that function can also be expressed more cleverly as

$$
\begin{equation*}
\left(\left(\left(x_{2} \wedge \bar{x}_{4}\right) \oplus \bar{x}_{3}\right) \wedge \bar{x}_{1}\right) \oplus x_{2} \tag{6}
\end{equation*}
$$

so its complexity is at most 4 .
How can nonobvious formulas like (6) be discovered? We will see that a computer can find the best chains for functions of four variables without doing an enormous amount of work. Still, the results can be quite startling, even for people who have had considerable experience with Boolean algebra. Typical examples of this phenomenon can be seen in Fig. 5, which illustrates the four-variable functions that are perhaps of greatest general interest, namely the functions that are symmetric under all permutations of their variables.

Consider, for example, the function $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, for which we have

x_{1}	0000000011111111
x_{2}	0000111100001111
x_{3}	0011001100110011
x_{4}	0101010101010101
$x_{5}=x_{1} \oplus x_{3}$	0011001111001100
$x_{6}=x_{1} \oplus x_{2}$	0000111111110000
$x_{7}=x_{3} \oplus x_{4}$	0110011001100110
$x_{8}=x_{5} \vee x_{6}$	0011111111111100
$x_{9}=x_{6} \oplus x_{7}$	0110100110010110
$x_{10}=x_{8} \wedge \bar{x}_{9}$	0001011001101000

according to Fig. 5. Truth tables are shown here so that we can easily verify each step of the calculation. Step x_{8} yields a function that is true whenever $x_{1} \neq x_{2}$ or $x_{1} \neq x_{3}$; and $x_{9}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$ is the parity function $\left(x_{1}+x_{2}+\right.$ $\left.x_{3}+x_{4}\right) \bmod 2$. Therefore the final result, x_{10}, is true precisely when exactly two of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are 1 ; these are the cases that satisfy x_{8} and have even parity.

Several of the other computational schemes of Fig. 5 can also be justified intuitively. But some of the chains, like the one for S_{14}, are quite amazing.

Notice that the intermediate result x_{6} is used twice in (7). In fact, no sixstep chain for the function $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is possible without making double use of some intermediate subexpression; the shortest algebraic formulas for S_{2}, including nice symmetrical ones like

$$
\begin{equation*}
\left(\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right)\right) \oplus\left(\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \vee x_{4}\right)\right) \tag{8}
\end{equation*}
$$

all have cost 7 . But Fig. 5 shows that the other symmetric functions of four variables can all be evaluated optimally via "pure" binary trees, without overlapping subtrees except at external nodes (which represent the variables).

Fig. 5. Optimum Boolean chains for the symmetric functions of four variables.

In general, if $f\left(x_{1}, \ldots, x_{n}\right)$ is any Boolean function, we say that its length $L(f)$ is the number of binary operators in the shortest formula for f. Obviously $L(f) \geq C(f)$; and we can easily verify that $L(f)=C(f)$ whenever $n \leq 3$, by considering the fourteen basic types of 3 -variable functions in 7.1.1-(95). But we have just seen that $L\left(S_{2}\right)=7$ exceeds $C\left(S_{2}\right)=6$ when $n=4$, and in fact $L(f)$ is almost always substantially larger than $C(f)$ when n is large (see exercise 49).

The depth $D(f)$ of a Boolean function f is another important measure of its inherent complexity: We say that the depth of a Boolean chain is the length of the longest downward path in its tree diagram, and $D(f)$ is the minimum achievable depth when all Boolean chains for f are considered. All of the chains illustrated in Fig. 5 have not only the minimum cost but also the minimum depth - except in the cases S_{23} and S_{12}, where we cannot simultaneously achieve cost 6 and depth 3. The formula

$$
\begin{equation*}
S_{23}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\left(x_{1} \wedge x_{2}\right) \oplus\left(x_{3} \wedge x_{4}\right)\right) \oplus\left(\left(x_{1} \vee x_{2}\right) \wedge\left(x_{3} \oplus x_{4}\right)\right) \tag{9}
\end{equation*}
$$

shows that $D\left(S_{23}\right)=3$, and a similar formula works for S_{12}.
Optimum chains for $\boldsymbol{n}=\mathbf{4}$. Exhaustive computations for 4 -variable functions are feasible because such functions have only $2^{16}=65,536$ possible truth tables. In fact we need only consider half of those truth tables, because the complement \bar{f} of any function f has the same cost, length, and depth as f itself.

Let's say that $f\left(x_{1}, \ldots, x_{n}\right)$ is normal if $f(0, \ldots, 0)=0$, and in general that

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right) \oplus f(0, \ldots, 0) \tag{10}
\end{equation*}
$$

is the "normalization" of f. Any Boolean chain can be normalized by normalizing each of its steps and by making appropriate changes to the operators; for if $\left(\hat{x}_{1}, \ldots, \hat{x}_{i-1}\right)$ are the normalizations of $\left(x_{1}, \ldots, x_{i-1}\right)$ and if $x_{i}=x_{j(i)} \circ_{i} x_{k(i)}$ as in (1), then \hat{x}_{i} is clearly a binary function of $\hat{x}_{j(i)}$ and $\hat{x}_{k(i)}$. (Exercise 7 presents an example.) Therefore we can restrict consideration to normal Boolean chains, without loss of generality.

Notice that a Boolean chain is normal if and only if each of its binary operators \circ_{i} is normal. And there are only eight normal binary operators three of which, namely \perp, L, and R, are trivial. So we can assume that all Boolean chains of interest are formed from the five operators $\wedge, \bar{\subset}, \bar{\varsigma}, \vee$, and \oplus, which are denoted respectively by $₫, \odot, \ominus, \otimes$, and \oplus in Fig. 5. Furthermore we can assume that $j(i)<k(i)$ in each step.

There are $2^{15}=32,768$ normal functions of four variables, and we can compute their lengths without difficulty by systematically enumerating all functions of length $0,1,2$, etc. Indeed, $L(f)=r$ implies that $f=g \circ h$ for some g and h, where $L(g)+L(h)=r-1$ and \circ is one of the five nontrivial normal operators; so we can proceed as follows:

Algorithm L (Find normal lengths). This algorithm determines $L(f)$ for all normal truth tables $0 \leq f<2^{2^{n}-1}$, by building lists of all nonzero normal functions of length r for $r \geq 0$.
L1. [Initialize.] Let $L(0) \leftarrow 0$ and $L(f) \leftarrow \infty$ for $1 \leq f<2^{2^{n}-1}$. Then, for $1 \leq k \leq n$, set $L\left(x_{k}\right) \leftarrow 0$ and put x_{k} into list 0 , where

$$
\begin{equation*}
x_{k}=\left(2^{2^{n}}-1\right) /\left(2^{2^{n-k}}+1\right) \tag{11}
\end{equation*}
$$

is the truth table for x_{k}. (See exercise 8.) Finally, set $c \leftarrow 2^{2^{n}-1}-n-1$; c is the number of places where $L(f)=\infty$.
L2. [Loop on r.] Do step L3 for $r=1,2, \ldots$; eventually the algorithm will terminate when c becomes 0 .
L3. [Loop on j and k.] Do step L4 for $j=0,1, \ldots$, and $k=r-1-j$, while $j \leq k$.
L4. [Loop on g and h.] Do step L5 for all g in list j and all h in list k. (If $j=k$, it suffices to restrict h to functions that follow g in list k.)
L5. [Loop on f.] Do step L6 for $f=g \& h, f=\bar{g} \& h, f=g \& \bar{h}, f=g \mid h$, and $f=g \oplus h$. (Here $g \& h$ denotes the bitwise AND of the integers g and h; we are representing truth tables by integers in binary notation.)
L6. [Is f new?] If $L(f)=\infty$, set $L(f) \leftarrow r, c \leftarrow c-1$, and put f in list r. Terminate the algorithm if $c=0 . \quad$ I
Exercise 10 shows that a similar procedure will compute all depths $D(f)$.
With a little more work, we can in fact modify Algorithm L so that it finds better upper bounds on $C(f)$, by computing a heuristic bit vector $\phi(f)$ called

Table 1
THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

$C(f)$	Classes	Functions	$L(f)$	Classes	Functions	$D(f)$	Classes	Functions
0	2	10	0	2	10	0	2	10
1	2	60	1	2	60	1	2	60
2	5	456	2	5	456	2	17	1458
3	20	2474	3	20	2474	3	179	56456
4	34	10624	4	34	10624	4	22	7552
5	75	24184	5	75	24184	5	0	0
6	72	25008	6	68	24640	6	0	0
7	12	2720	7	16	3088	7	0	0

the "footprint" of f. A normal Boolean chain can begin in only $5\binom{n}{2}$ different ways, since the first step x_{n+1} must be either $x_{1} \wedge x_{2}$ or $\bar{x}_{1} \wedge x_{2}$ or $x_{1} \wedge \bar{x}_{2}$ or $x_{1} \vee x_{2}$ or $x_{1} \oplus x_{2}$ or $x_{1} \wedge x_{3}$ or \cdots or $x_{n-1} \oplus x_{n}$. Suppose $\phi(f)$ is a bit vector of length $5\binom{n}{2}$ and $U(f)$ is an upper bound on $C(f)$, with the following property: Every 1 bit in $\phi(f)$ corresponds to the first step of some Boolean chain that computes f in $U(f)$ steps.

Such pairs $(U(f), \phi(f))$ can be computed by extending the basic strategy of Algorithm L. Initially we set $U(f) \leftarrow 1$ and we set $\phi(f)$ to an appropriate vector $0 \ldots 010 \ldots 0$, for all functions f of cost 1 . Then, for $r=2,3, \ldots$, we proceed to look for functions $f=g \circ h$ where $U(g)+U(h)=r-1$, as before, but with two changes: (1) If the footprints of g and h have at least one element in common, namely if $\phi(g) \& \phi(h) \neq 0$, then we know that $C(f) \leq r-1$, so we can decrease $U(f)$ if it was $\geq r$. (2) If the cost of $g \circ h$ is equal to (but not less than) our current upper bound $U(f)$, we can set $\phi(f) \leftarrow \phi(f) \mid(\phi(g) \mid \phi(h))$ if $U(f)=r$, $\phi(f) \leftarrow \phi(f) \mid(\phi(g) \& \phi(h))$ if $U(f)=r-1$. Exercise 11 works out the details.

It turns out that this footprint heuristic is powerful enough to find chains of optimum cost $U(f)=C(f)$ for all functions f, when $n=4$. Moreover, we'll see later that footprints also help us solve more complicated evaluation problems.

According to Table 7.1.1-5, the $2^{16}=65,536$ functions of four variables belong to only 222 distinct classes when we ignore minor differences due to permutation of variables and/or complementation of values. Algorithm L and its variants lead to the overall statistics shown in Table 1.
*Evaluation with minimum memory. Suppose the Boolean values x_{1}, \ldots, x_{n} appear in n registers, and we want to evaluate a function by performing a sequence of operations having the form

$$
\begin{equation*}
x_{j(i)} \leftarrow x_{j(i)} \circ_{i} x_{k(i)}, \quad \text { for } 1 \leq i \leq r \tag{12}
\end{equation*}
$$

where $1 \leq j(i) \leq n$ and $1 \leq k(i) \leq n$ and \circ_{i} is a binary operator. At the end of the computation, the desired function value should appear in one of the registers. When $n=3$, for example, the four-step sequence

$$
\begin{align*}
& x_{1} \leftarrow x_{1} \oplus x_{2} \\
& x_{3} \leftarrow x_{3} \wedge x_{1} \tag{13}\\
& x_{2} \leftarrow x_{2} \wedge \bar{x}_{1} \\
& x_{3} \leftarrow x_{3} \vee x_{2}
\end{align*}
$$

$\left(x_{1}=00001111\right.$	$x_{2}=00110011$	$\left.x_{3}=01010101\right)$
$\left(x_{1}=00111100\right.$	$x_{2}=00110011$	$\left.x_{3}=01010101\right)$
$\left(x_{1}=00111100\right.$	$x_{2}=00110011$	$\left.x_{3}=00010100\right)$
$\left(x_{1}=00111100\right.$	$x_{2}=00000011$	$\left.x_{3}=00010100\right)$
$\left(x_{1}=00111100\right.$	$x_{2}=00000011$	$\left.x_{3}=00010111\right)$

computes the median $\left\langle x_{1} x_{2} x_{3}\right\rangle$ and puts it into the original position of x_{3}. (All eight possibilities for the register contents are shown here as truth tables, before and after each operation.)

In fact we can check the calculation by working with only one truth table at a time, instead of keeping track of all three, if we analyze the situation backwards. Let $f_{l}\left(x_{1}, \ldots, x_{n}\right)$ denote the function computed by steps $l, l+1, \ldots, r$ of the sequence, omitting the first $l-1$ steps; thus, in our example, $f_{2}\left(x_{1}, x_{2}, x_{3}\right)$ would be the result in x_{3} after the three steps $x_{3} \leftarrow x_{3} \wedge x_{1}, x_{2} \leftarrow x_{2} \wedge \bar{x}_{1}, x_{3} \leftarrow x_{3} \vee x_{2}$. Then the function computed in register x_{3} by all four steps is

$$
\begin{equation*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=f_{2}\left(x_{1} \oplus x_{2}, x_{2}, x_{3}\right) \tag{14}
\end{equation*}
$$

Similarly $f_{2}\left(x_{1}, x_{2}, x_{3}\right)=f_{3}\left(x_{1}, x_{2}, x_{3} \wedge x_{1}\right), f_{3}\left(x_{1}, x_{2}, x_{3}\right)=f_{4}\left(x_{1}, x_{2} \wedge \bar{x}_{1}, x_{3}\right)$, $f_{4}\left(x_{1}, x_{2}, x_{3}\right)=f_{5}\left(x_{1}, x_{2}, x_{3} \vee x_{2}\right)$, and $f_{5}\left(x_{1}, x_{2}, x_{3}\right)=x_{3}$. We can therefore go back from f_{5} to f_{4} to \cdots to f_{1} by operating on truth tables in an appropriate way.

For example, suppose $f\left(x_{1}, x_{2}, x_{3}\right)$ is a function whose truth table is

$$
t=a_{0} a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}
$$

then the truth table for $g\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1} \oplus x_{2}, x_{2}, x_{3}\right)$ is

$$
u=a_{0} a_{1} a_{6} a_{7} a_{4} a_{5} a_{2} a_{3},
$$

obtained by replacing a_{x} by $a_{x^{\prime}}$, where

$$
x=\left(x_{1} x_{2} x_{3}\right)_{2} \quad \text { implies } \quad x^{\prime}=\left(\left(x_{1} \oplus x_{2}\right) x_{2} x_{3}\right)_{2} .
$$

Similarly the truth table for, say, $h\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}, x_{2}, x_{3} \wedge x_{1}\right)$ is

$$
v=a_{0} a_{0} a_{2} a_{2} a_{4} a_{5} a_{6} a_{7}
$$

And we can use bitwise operations to compute u and v from t :

$$
\begin{align*}
& u=t \oplus\left((t \oplus(t \gg 4) \oplus(t \ll 4)) \&(00110011)_{2}\right) \tag{15}\\
& v=t \oplus\left((t \oplus(t \gg 1)) \&(01010000)_{2}\right) \tag{16}
\end{align*}
$$

Let $C_{m}(f)$ be the length of a shortest minimum-memory computation for f. The backward-computation principle tells us that, if we know the truth tables of all functions f with $C_{m}(f)<r$, we can readily find all the truth tables of functions with $C_{m}(f)=r$. Namely, we can restrict consideration to normal functions as before. Then, for all normal g such that $C_{m}(g)=r-1$, we can construct the $5 n(n-1)$ truth tables for

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{j-1}, x_{j} \circ x_{k}, x_{j+1}, \ldots, x_{n}\right) \tag{17}
\end{equation*}
$$

and mark them with cost r if they haven't previously been marked. Exercise 14 shows that those truth tables can all be computed by performing simple bitwise operations on the truth table for g.

When $n=4$, all but 13 of the 222 basic function types turn out to have $C_{m}(f)=C(f)$, so they can be evaluated in minimum memory without increasing the cost. In particular, all of the symmetric functions have this property although that fact is not at all obvious from Fig. 5. Five classes of functions
have $C(f)=5$ but $C_{m}(f)=6$; eight classes have $C(f)=6$ but $C_{m}(f)=7$. The most interesting example of the latter type is probably the function $\left(x_{1} \vee x_{2}\right) \oplus$ $\left(x_{3} \vee x_{4}\right) \oplus\left(x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4}\right)$, which has cost 6 because of the formula

$$
\begin{equation*}
x_{1} \oplus\left(x_{3} \vee x_{4}\right) \oplus\left(x_{2} \wedge\left(\bar{x}_{1} \vee\left(x_{3} \wedge x_{4}\right)\right)\right) \tag{18}
\end{equation*}
$$

but it has no minimum-memory chain of length less than 7. (See exercise 15.)
*Determining the minimum cost. The exact value of $C(f)$ can be found by observing that all optimum Boolean chains $\left(x_{n+1}, \ldots, x_{n+r}\right)$ for f satisfy at least one of three conditions:
i) $x_{n+r}=x_{j} \circ x_{k}$, where x_{j} and x_{k} use no common intermediate results;
ii) $x_{n+1}=x_{j} \circ x_{k}$, where either x_{j} or x_{k} is not used in steps x_{n+2}, \ldots, x_{n+r};
iii) Neither of the above.

In case (i) we have $f=g \circ h$, where $C(g)+C(h)=r-1$, and we can call this a "top-down" construction. In case (ii) we have $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{j-1}\right.$, $\left.x_{j} \circ x_{k}, x_{j+1}, \ldots, x_{n}\right)$, where $C(g)=r-1$; we call this construction "bottom-up."

The best chains that recursively use only top-down constructions correspond to minimum formula length, $L(f)$. The best chains that recursively use only bottom-up constructions correspond to minimum-memory calculations, of length $C_{m}(f)$. We can do better yet, by mixing top-down constructions with bottom-up constructions; but we still won't know that we've found $C(f)$, because a special chain belonging to case (iii) might be shorter.

Fortunately such special chains are rare, because they must satisfy rather strong conditions, and they can be exhaustively listed when n and r aren't too large. For example, exercise 19 proves that no special chains exist when $r<n+2$; and when $n=4, r=6$, there are only 25 essentially different special chains that cannot obviously be shortened:

By systematically trying 5^{r} possibilities in every special chain, one for each way to assign a normal operator to the internal nodes of the tree, we will find at least
one function f in every equivalence class for which the minimum cost $C(f)$ is achievable only in case (iii).

In fact, when $n=4$ and $r=6$, these $25 \cdot 5^{6}=390,625$ trials yield only one class of functions that can't be computed in 6 steps by any top-down-plus-bottom-up chain. The missing class, typified by the partially symmetric function $\left(\left\langle x_{1} x_{2} x_{3}\right\rangle \vee x_{4}\right) \oplus\left(x_{1} \wedge x_{2} \wedge x_{3}\right)$, can be reached in six steps by appropriately specializing any of the first five chains illustrated above; for example, one way is

$$
\begin{align*}
& x_{5}=x_{1} \wedge x_{2}, \quad x_{6}=x_{1} \vee x_{2}, \quad x_{7}=x_{3} \oplus x_{5}, \\
& \tag{19}\\
& x_{8}=x_{4} \wedge \bar{x}_{5}, \quad x_{9}=x_{6} \wedge x_{7}, \quad x_{10}=x_{8} \vee x_{9},
\end{align*}
$$

corresponding to the first special chain. Since all other functions have $L(f) \leq 7$, these trial calculations have established the true minimum cost in all cases.

Historical notes: The first concerted attempts to evaluate all Boolean functions $f(w, x, y, z)$ optimally were reported in Annals of the Computation Laboratory of Harvard University 27 (1951), where Howard Aiken's staff presented heuristic methods and extensive tables of the best switching circuits they were able to construct. Their cost measure $V(f)$ was different from the cost $C(f)$ that we've been considering, because it was based on "control grids" of vacuum tubes: They had three kinds of gates, NOR, OR, and NAND, each of which could take k inputs with cost k. Every input to such a gate could be either a variable, or the complement of a variable, or the result of a previous gate. Furthermore the function being evaluated was represented at the top level as an AND of any number of gates, with no additional cost.

With those cost criteria, a function might not have the same cost as its complement, because AND gates were possible only at the top level. One could evaluate $x \wedge y$ as $\operatorname{NOR}(\bar{x}, \bar{y})$, with cost 2 ; but the cost of $\bar{x} \vee(\bar{y} \wedge \bar{z})=\operatorname{NAND}(x, \operatorname{OR}(y, z))$ was 4 while its complement $x \wedge(y \vee z)=\operatorname{AND}(\operatorname{NOR}(\bar{x}), \operatorname{OR}(y, z))$ cost only 3. Therefore the Harvard researchers needed to consider 402 essentially different classes of 4 -variable functions instead of 222 (see the answer to exercise 7.1.1-125). Of course in those days they were working by hand. They found $V(f)<20$ in all cases, except for the 64 functions equivalent to $S_{01}(w, x, y, z) \vee$ $\left(S_{2}(w, x, y) \wedge z\right)$, which they evaluated with 20 control grids as follows:

$$
\begin{align*}
& g_{1}=\operatorname{NOR}(\bar{w}, \bar{x}), g_{2}=\operatorname{NAND}(\bar{y}, z), g_{3}=\operatorname{NOR}(w, x), \\
& f=\operatorname{AND}\left(\operatorname{NAND}\left(g_{1}, g_{2}\right), \operatorname{NAND}\left(g_{3}, \operatorname{NOR}(\bar{y}, \bar{z})\right),\right. \\
& \left.\quad \operatorname{NOR}\left(\operatorname{NOR}\left(g_{3}, \bar{y}, z\right), \operatorname{NOR}\left(g_{1}, g_{2}, g_{3}\right)\right)\right) . \tag{20}
\end{align*}
$$

The first computer program to find provably optimum circuits was written by Leo Hellerman [IEEE Transactions EC-12 (1963), 198-223], who determined the fewest NOR gates needed to evaluate any given function $f(x, y, z)$. He required every input of every gate to be either an uncomplemented variable or the output of a previous gate; fan-in and fan-out were limited to at most 3. When two circuits had the same gate count, he preferred the one with smallest sum-of-inputs. For example, he computed $\bar{x}=\operatorname{NOR}(x)$ with cost $1 ; x \vee y \vee z=$ $\operatorname{NOR}(\operatorname{NOR}(x, y, z))$ with cost $2 ;\langle x y z\rangle=\operatorname{NOR}(\operatorname{NOR}(x, y), \operatorname{NOR}(x, z), \operatorname{NOR}(y, z))$

Table 2
THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

$C(f)$	Classes	Functions	$L(f)$	Classes	Functions	$D(f)$	Classes	Functions
0	2	12	0	2	12	0	2	12
1	2	100	1	2	100	1	2	100
2	5	1140	2	5	1140	2	17	5350
3	20	11570	3	20	11570	3	1789	6702242
4	93	109826	4	93	109826	4	614316	4288259592
5	389	995240	5	366	936440	5	0	0
6	1988	8430800	6	1730	7236880	6	0	0
7	11382	63401728	7	8782	47739088	7	0	0
8	60713	383877392	8	40297	250674320	8	0	0
9	221541	1519125536	9	141422	955812256	9	0	0
10	293455	2123645248	10	273277	1945383936	10	0	0
11	26535	195366784	11	145707	1055912608	11	0	0
12	1	1920	12	4423	31149120	12	0	0

with cost $4 ; S_{1}(x, y, z)=\operatorname{NOR}(\operatorname{NOR}(x, y, z),\langle x y z\rangle)$ with cost 6 ; etc. Since he limited the fan-out to 3 , he found that every function of three variables could be evaluated with cost 7 or less, except for the parity function $x \oplus y \oplus z=(x \equiv y) \equiv z$, where $x \equiv y$ has cost 4 because it is $\operatorname{NOR}(\operatorname{NOR}(x, \operatorname{NOR}(x, y)), \operatorname{NOR}(y, \operatorname{NOR}(x, y)))$.

Electrical engineers continued to explore other cost criteria; but four-variable functions seemed out of reach until 1977, when Frank M. Liang established the values of $C(f)$ shown in Table 1. Liang's unpublished derivation was based on a study of all chains that cannot be reduced by the bottom-up construction.

The case $\boldsymbol{n}=\mathbf{5}$. There are 616,126 classes of essentially different functions $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, according to Table 7.1.1-5. Computers are now fast enough that this number is no longer frightening; so the author decided while writing this section to investigate $C(f)$ for all Boolean functions of five variables. Thanks to a bit of good luck, complete results could indeed be obtained, leading to the statistics shown in Table 2.

For this calculation Algorithm L and its variants were modified to deal with class representatives, instead of with the entire set of 2^{31} normal truth tables. The method of exercise 7.2.1.2-20 made it easy to generate all functions of a class, given any one of them, resulting in a thousand-fold speedup. The bottom-up method was enhanced slightly, allowing it to deduce for example that $f\left(x_{1} \wedge x_{2}, x_{1} \vee x_{2}, x_{3}, x_{4}, x_{5}\right)$ has cost $\leq r$ if $C(f)=r-2$. After all classes of cost 10 had been found, the top-down and bottom-up methods were able to find chains of length ≤ 11 for all but seven classes of functions. Then the timeconsuming part of the computation began, in which approximately 53 million special chains with $n=5$ and $r=11$ were generated; every such chain led to $5^{11}=48,828,125$ functions, some of which would hopefully fall into the seven remaining mystery classes. But only six of those classes were found to have 11step solutions. The lone survivor, whose truth table is 169ae443 in hexadecimal notation, is the unique class for which $C(f)=12$, and it also has $L(f)=12$.

The resulting constructions of symmetric functions are shown in Fig. 6. Some of them are astonishingly beautiful; some of them are beautifully simple;

Fig. 6. Boolean chains of minimum cost for symmetric functions of five variables.
and others are simply astonishing. (Look, for example, at the 8-step computation of $S_{23}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$, or the elegant formula for S_{234}, or the nonmonotonic chains for S_{45} and S_{345}.) Incidentally, Table 2 shows that all 5 -variable functions have depth ≤ 4, but no attempt to minimize depth has been made in Fig. 6.

It turns out that all of these symmetric functions can be evaluated in minimum memory without increasing the cost. But no simple proof of that fact is known.

Multiple outputs. We often want to evaluate several different Boolean functions $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$ at the same input values x_{1}, \ldots, x_{n}; in other words, we often want to evaluate a multibit function $y=f(x)$, where $y=f_{1} \ldots f_{m}$ is a binary vector of length m and $x=x_{1} \ldots x_{n}$ is a binary vector of length n. With luck, much of the work involved in the computation of one component value $f_{j}\left(x_{1}, \ldots, x_{n}\right)$ can be shared with the operations that are needed to evaluate the other component values $f_{k}\left(x_{1}, \ldots, x_{n}\right)$.

Let $C(f)=C\left(f_{1} \ldots f_{m}\right)$ be the length of a shortest Boolean chain that computes all of the nontrivial functions f_{j}. More precisely, the chain $\left(x_{n+1}, \ldots, x_{n+r}\right)$ should have the property that, for $1 \leq j \leq m$, either $f_{j}\left(x_{1}, \ldots, x_{n}\right)=x_{l(j)}$ or $f_{j}\left(x_{1}, \ldots, x_{n}\right)=\bar{x}_{l(j)}$, for some $l(j)$ with $0 \leq l(j) \leq n+r$, where $x_{0}=0$. Clearly $C(f) \leq C\left(f_{1}\right)+\cdots+C\left(f_{m}\right)$, but we might be able to do much better.

For example, suppose we want to compute the functions z_{1} and z_{0} defined by

$$
\begin{equation*}
\left(z_{1} z_{0}\right)_{2}=x_{1}+x_{2}+x_{3} \tag{21}
\end{equation*}
$$

the two-bit binary sum of three Boolean variables. We have

$$
\begin{equation*}
z_{1}=\left\langle x_{1} x_{2} x_{3}\right\rangle \quad \text { and } \quad z_{0}=x_{1} \oplus x_{2} \oplus x_{3} \tag{22}
\end{equation*}
$$

so the individual costs are $C\left(z_{1}\right)=4$ and $C\left(z_{0}\right)=2$. But it's easy to see that the combined cost $C\left(z_{1} z_{0}\right)$ is at most 5 , because $x_{1} \oplus x_{2}$ is a suitable first step in the evaluation of each bit z_{j} :

$$
\begin{array}{rlr}
x_{6}=x_{3} \wedge x_{4}, & x_{4}=x_{1} \oplus x_{2} \\
x_{7} & =x_{1} \wedge x_{2}, & z_{0}=x_{5}=x_{3} \oplus x_{4} \tag{23}\\
z_{1}=x_{8} & =x_{6} \vee x_{7} &
\end{array}
$$

Furthermore, exhaustive calculations show that $C\left(z_{1} z_{0}\right)>4$; hence $C\left(z_{1} z_{0}\right)=5$.
Electrical engineers traditionally call a circuit for (21) a full adder, because n such building blocks can be hooked together to add two n-bit numbers. The special case of (22) in which $x_{3}=0$ is also important, although it boils down simply to

$$
\begin{equation*}
z_{1}=x_{1} \wedge x_{2} \quad \text { and } \quad z_{0}=x_{1} \oplus x_{2} \tag{24}
\end{equation*}
$$

and has complexity 2 ; engineers call it a "half adder" in spite of the fact that the cost of a full adder exceeds the cost of two half adders.

The general problem of radix-2 addition

$$
\begin{array}{r}
\left(x_{n-1} \ldots x_{1} x_{0}\right)_{2} \tag{25}\\
\left(y_{n-1} \ldots y_{1} y_{0}\right)_{2} \\
\hline\left(z_{n} z_{n-1} \ldots z_{1} z_{0}\right)_{2}
\end{array}
$$

is to compute $n+1$ Boolean outputs $z_{n} \ldots z_{1} z_{0}$ from the $2 n$ Boolean inputs $x_{n-1} \ldots x_{1} x_{0} y_{n-1} \ldots y_{1} y_{0}$; and it is readily solved by the formulas

$$
\begin{equation*}
c_{j+1}=\left\langle x_{j} y_{j} c_{j}\right\rangle, \quad z_{j}=x_{j} \oplus y_{j} \oplus c_{j}, \quad \text { for } 0 \leq j<n \tag{26}
\end{equation*}
$$

where the c_{j} are "carry bits" and we have $c_{0}=0, z_{n}=c_{n}$. Therefore we can use a half adder to compute c_{1} and z_{0}, followed by $n-1$ full adders to compute the other c 's and z 's, accumulating a total cost of $5 n-3$. And in fact N. P. Red'kin [Problemy Kibernetiki 38 (1981), 181-216] has proved that $5 n-3$ steps
are actually necessary, by constructing an elaborate 35-page proof by induction, which concludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this circuit, $2 n-1$, is far too large for practical parallel computation, so a great deal of effort has gone into the task of devising circuits for addition that have depth $O(\log n)$ as well as reasonable cost. (See exercises 41-44.)

Now let's extend (21) and try to compute a general "sideways sum"

$$
\begin{equation*}
\left(z_{\lfloor\lg n\rfloor} \cdots z_{1} z_{0}\right)_{2}=x_{1}+x_{2}+\cdots+x_{n} . \tag{27}
\end{equation*}
$$

If $n=2 k+1$, we can use k full adders to reduce the sum to $\left(x_{1}+\cdots+x_{n}\right) \bmod 2$ plus k bits of weight 2 , because each full adder decreases the number of weight- 1 bits by 2 . For example, if $n=9$ and $k=4$ the computation is

$$
\begin{aligned}
& x_{10}=x_{1} \oplus x_{2} \oplus x_{3}, \quad x_{11}=x_{4} \oplus x_{5} \oplus x_{6}, \quad x_{12}=x_{7} \oplus x_{8} \oplus x_{9}, \quad x_{13}=x_{10} \oplus x_{11} \oplus x_{12}, \\
& y_{1}=\left\langle x_{1} x_{2} x_{3}\right\rangle, \quad y_{2}=\left\langle x_{4} x_{5} x_{6}\right\rangle, \quad y_{3}=\left\langle x_{7} x_{8} x_{9}\right\rangle, \quad y_{4}=\left\langle x_{10} x_{11} x_{12}\right\rangle,
\end{aligned}
$$

and we have $x_{1}+\cdots+x_{9}=x_{13}+2\left(y_{1}+y_{2}+y_{3}+y_{4}\right)$. If $n=2 k$ is even, a similar reduction applies but with a half adder at the end. The bits of weight 2 can then be summed in the same way; so we obtain the recurrence

$$
\begin{equation*}
s(n)=5\lfloor n / 2\rfloor-3[n \text { even }]+s(\lfloor n / 2\rfloor), \quad s(0)=0 \tag{28}
\end{equation*}
$$

for the total number of gates needed to compute $z_{\lfloor\lg n\rfloor} \ldots z_{1} z_{0}$. (A closed formula for $s(n)$ appears in exercise 30.) We have $s(n)<5 n$, and the first values

$$
\begin{array}{ccccccccccccccccccccc}
n & =1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
s(n) & =0 & 2 & 5 & 9 & 12 & 17 & 20 & 26 & 29 & 34 & 37 & 44 & 47 & 52 & 55 & 63 & 66 & 71 & 74 & 81
\end{array}
$$

show that the method is quite efficient even for small n. For example, when $n=5$ it produces

which computes three different symmetric functions $z_{2}=S_{45}\left(x_{1}, \ldots, x_{5}\right), z_{1}=$ $S_{23}\left(x_{1}, \ldots, x_{5}\right), z_{0}=S_{135}\left(x_{1}, \ldots, x_{5}\right)$ in just 12 steps. The 10 -step computation of S_{45} is optimum, according to Fig. 6, and of course the 4-step computation of S_{135} is also optimum. Furthermore, although $C\left(S_{23}\right)=8$, the function S_{23} is computed here in a clever 10 -step way that shares all but one gate with S_{45}.

Notice that we can now compute any symmetric function efficiently, because every symmetric function of $\left\{x_{1}, \ldots, x_{n}\right\}$ is a Boolean function of $z_{\lfloor\lg n\rfloor} \ldots z_{1} z_{0}$. We know, for example, that any Boolean function of four variables has complexity ≤ 7; therefore any symmetric function $S_{k_{1} \ldots k_{t}}\left(x_{1}, \ldots, x_{15}\right)$ costs at most $s(15)+$ $7=62$. Surprise: The symmetric functions of n variables were among the hardest of all to evaluate, when n was small, but they're among the easiest when $n \geq 10$.

We can also compute sets of symmetric functions efficiently. If we want, say, to evaluate all $n+1$ symmetric functions $S_{k}\left(x_{1}, \ldots, x_{n}\right)$ for $0 \leq k \leq n$ with a single Boolean chain, we simply need to evaluate the first $n+1$ minterms of z_{0}, z_{1}, $\ldots, z_{\lfloor\lg n\rfloor}$. For example, when $n=5$ the minterms that give us all functions S_{k} are respectively $S_{0}=\bar{z}_{0} \wedge \bar{z}_{1} \wedge \bar{z}_{2}, S_{1}=\bar{z}_{0} \wedge \bar{z}_{1} \wedge z_{2}, \ldots, S_{5}=z_{0} \wedge \bar{z}_{1} \wedge z_{2}$.

How hard is it to compute all 2^{n} minterms of n variables? Electrical engineers call this function an n-to- 2^{n} binary decoder, because it converts n bits $x_{1} \ldots x_{n}$ into a sequence of 2^{n} bits $d_{0} d_{1} \ldots d_{2^{n}-1}$, exactly one of which is 1 . The principle of "divide and conquer" suggests that we first evaluate all minterms on the first $\lceil n / 2\rceil$ variables, as well as all minterms on the last $\lfloor n / 2\rfloor$; then 2^{n} AND gates will finish the job. The cost of this method is $t(n)$, where

$$
\begin{equation*}
t(0)=t(1)=0 ; \quad t(n)=2^{n}+t(\lceil n / 2\rceil)+t(\lfloor n / 2\rfloor) \quad \text { for } n \geq 2 \tag{3о}
\end{equation*}
$$

So $t(n)=2^{n}+O\left(2^{n / 2}\right)$; there's roughly one gate per minterm. (See exercise 32.)
Functions with multiple outputs often help us build larger functions with single outputs. For example, we've seen that the sideways adder (27) allows us to compute symmetric functions; and an n-to- 2^{n} decoder also has many applications, in spite of the fact that 2^{n} can be huge when n is large. A case in point is the 2^{m}-way multiplexer $M_{m}\left(x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{2^{m}-1}\right)$, also known as the m-bit storage access function, which has $n=m+2^{m}$ inputs and takes the value y_{k} when $\left(x_{1} \ldots x_{m}\right)_{2}=k$. By definition we have

$$
\begin{equation*}
M_{m}\left(x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{2^{m}-1}\right)=\bigvee_{k=0}^{2^{m}-1}\left(d_{k} \wedge y_{k}\right) \tag{31}
\end{equation*}
$$

where d_{k} is the k th output of an m-to- 2^{m} binary decoder; thus, by (30), we can evaluate M_{m} with $2^{m}+\left(2^{m}-1\right)+t(m)=3 n+O(\sqrt{n})$ gates. But exercise 39 shows that we can actually reduce the cost to only $2 n+O(\sqrt{n})$. (See also exercise 79.)

Asymptotic facts. We've seen lots of cases where Boolean functions can be evaluated with great efficiency, especially when the number of variables is small. So it's natural to expect that, when more variables are present, even more opportunities for ingenious evaluations will arise. But the truth is exactly the opposite, at least from a statistical standpoint:

Theorem S. The cost of almost every Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ exceeds $2^{n} / n$. More precisely, if $c(n, r)$ Boolean functions have complexity $\leq r$, we have

$$
\begin{equation*}
(r-1)!c(n, r) \leq 2^{2 r+1}(n+r-1)^{2 r} \tag{2}
\end{equation*}
$$

Proof. If a function can be computed in $r-1$ steps, it is also computable by an r-step chain. (This statement is obvious when $r=1$, otherwise we can let $x_{n+r}=x_{n+r-1} \wedge x_{n+r-1}$.) We will show that there aren't very many r-step chains, hence we can't compute very many different functions with cost $\leq r$.

Let π be a permutation of $\{1, \ldots, n+r\}$ that takes $1 \mapsto 1, \ldots, n \mapsto n$, and $n+r \mapsto n+r$; there are $(r-1)$! such permutations. Suppose $\left(x_{n+1}, \ldots, x_{n+r}\right)$ is a

Boolean chain in which each of the intermediate steps $x_{n+1}, \ldots, x_{n+r-1}$ is used in at least one subsequent step. Then the permuted chains defined by the rule

$$
\begin{equation*}
x_{i}=x_{j^{\prime}(i)} \circ_{i}^{\prime} x_{k^{\prime}(i)}=x_{j(i \pi) \pi^{-}} \circ_{i \pi} x_{k(i \pi) \pi^{-}}, \quad \text { for } n<i \leq n+r \tag{33}
\end{equation*}
$$

are distinct for different π. (If π takes $a \mapsto b$, we write $b=a \pi$ and $a=b \pi^{-}$.) For example, if π takes $5 \mapsto 6 \mapsto 7 \mapsto 8 \mapsto 9 \mapsto 5$, the chain (7) becomes

Original

$$
\begin{aligned}
x_{5} & =x_{1} \oplus x_{3} \\
x_{6} & =x_{1} \oplus x_{2} \\
x_{7} & =x_{3} \oplus x_{4} \\
x_{8} & =x_{5} \vee x_{6} \\
x_{9} & =x_{6} \oplus x_{7} \\
x_{10} & =x_{8} \wedge \bar{x}_{9}
\end{aligned}
$$

Permuted

$$
\begin{aligned}
x_{5} & =x_{1} \oplus x_{2} \\
x_{6} & =x_{3} \oplus x_{4} \\
x_{7} & =x_{9} \vee x_{5} \\
x_{8} & =x_{5} \oplus x_{6} \\
x_{9} & =x_{1} \oplus x_{3} \\
x_{10} & =x_{7} \wedge \bar{x}_{8}
\end{aligned}
$$

Notice that we might have $j^{\prime}(i) \geq k^{\prime}(i)$ or $j^{\prime}(i)>i$ or $k^{\prime}(i)>i$, contrary to our usual rules. But the permuted chain computes the same function x_{n+r} as before, and it doesn't have any cycles by which an entry is defined indirectly in terms of itself, because the permuted x_{i} is the original $x_{i \pi}$.

We can restrict consideration to normal Boolean chains, as remarked earlier. So the $c(n, r) / 2$ normal Boolean functions of cost $\leq r$ lead to $(r-1)!c(n, r) / 2$ different permuted chains, where the operator \circ_{i} in each step is either $\wedge, \vee, \overline{,}$, or \oplus. And there are at most $4^{r}(n+r-1)^{2 r}$ such chains, because there are four choices for \circ_{i} and $n+r-1$ choices for each of $j(i)$ and $k(i)$, for $n<i \leq n+r$. Equation (32) follows; and we obtain the opening statement of the theorem by setting $r=\left\lfloor 2^{n} / n\right\rfloor$. (See exercise 46.) I

On the other hand, there's also good news for infinity-minded people: We can actually evaluate every Boolean function of n variables with only slightly more than $2^{n} / n$ steps of computation, even if we avoid \oplus and \equiv, using a technique devised by C. E. Shannon and improved by O. B. Lupanov [Bell System Tech. J. 28 (1949), 59-98, Theorem 6; Isvestiia Vuzov, Radiofizika 1 (1958), 120-140].

In fact, the Shannon-Lupanov approach leads to useful results even when n is small, so let's get acquainted with it by studying a small example. Consider

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left[\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}\right)_{2} \text { is prime }\right] \tag{35}
\end{equation*}
$$

a function that identifies all 6 -bit prime numbers. Its truth table has $2^{6}=64$ bits, and we can work with it conveniently by using a 4×16 array to look at those bits instead of confining ourselves to one dimension:

$$
\begin{align*}
& x_{3}=\begin{array}{lllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& x_{4}=\begin{array}{lllllllllllllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \\
& x_{5}=\begin{array}{llllllllllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array} \\
& x_{6}=\begin{array}{llllllllllllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{array} \\
& \begin{array}{l}
x_{1} x_{2}=00 \\
x_{1} x_{2}=01 \\
x_{1} x_{2}=10 \\
x_{1} x_{2}=11
\end{array} \begin{array}{lllllllllllllllll|}
\hline & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{array} \tag{6}
\end{align*}
$$

The rows have been divided into two groups of two rows each; and each group of rows has 16 columns, which are of four basic types, namely ${ }_{0}^{0},{ }_{1}^{0},{ }_{0}^{1}$, or ${ }_{1}^{1}$. Thus we see that the function can be expressed as

$$
\begin{array}{rlrl}
f\left(x_{1}, \ldots, x_{6}\right)= & \left(\left[x_{1} x_{2} \in\{00\}\right]\right. & \left.\wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{0010,0101,1011\}\right]\right) \\
& \vee\left(\left[x_{1} x_{2} \in\{01\}\right]\right. & \left.\wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{0001,1111\}\right]\right) \\
& \vee\left(\left[x_{1} x_{2} \in\{00,01\}\right]\right. & \left.\wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{0011,0111,1101\}\right]\right) \\
& \vee\left(\left[x_{1} x_{2} \in\{10\}\right]\right. & \left.\wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{1001,1111\}\right]\right) \\
& \vee\left(\left[x_{1} x_{2} \in\{11\}\right]\right. & \left.\wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{1101\}\right]\right) \\
& \vee\left(\left[x_{1} x_{2} \in\{10,11\}\right] \wedge\left[x_{3} x_{4} x_{5} x_{6} \in\{0101,1011\}\right]\right) . \tag{37}
\end{array}
$$

(The first line corresponds to group 1 , type ${ }_{0}^{1}$, then comes group 1 , type ${ }_{1}^{0}$, etc.; the last line corresponds to group 2 and type ${ }_{1}^{1}$.) A function like $\left[\left(x_{3} x_{4} x_{5} x_{6}\right)_{2} \in\right.$ $\{2,5,11\}]$ is the OR of three minterms of $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$.

In general we can view the truth table as a $2^{k} \times 2^{n-k}$ array, with l groups of rows having either $\left\lfloor 2^{k} / l\right\rfloor$ or $\left\lceil 2^{k} / l\right\rceil$ rows in each group. A group of size m will have columns of 2^{m} basic types. We form a conjunction $\left(g_{i t}\left(x_{1}, \ldots, x_{k}\right) \wedge\right.$ $\left.h_{i t}\left(x_{k+1}, \ldots, x_{n}\right)\right)$ for each group i and each nonzero type t, where $g_{i t}$ is the OR of all minterms of $\left\{x_{1}, \ldots, x_{k}\right\}$ for the rows of the group where t has a 1 , while $h_{i t}$ is the OR of all minterms of $\left\{x_{k+1}, \ldots, x_{n}\right\}$ for the columns having type t in group i. The OR of all these conjunctions $\left(g_{i t} \wedge h_{i t}\right)$ gives $f\left(x_{1}, \ldots, x_{n}\right)$.

Once we've chosen the parameters k and l, with $1 \leq k \leq n-2$ and $1 \leq l \leq 2^{k}$, the computation starts by computing all the minterms of $\left\{x_{1}, \ldots, x_{k}\right\}$ and all the minterms of $\left\{x_{k+1}, \ldots, x_{n}\right\}$, in $t(k)+t(n-k)$ steps (see (30)). Then, for $1 \leq i \leq l$, we let group i consist of rows for the values of $\left(x_{1}, \ldots, x_{k}\right)$ such that $(i-1) 2^{k} / l \leq\left(x_{1} \ldots x_{k}\right)_{2}<i 2^{k} / l$; it contains $m_{i}=\left\lceil i 2^{k} / l\right\rceil-\left\lceil(i-1) 2^{k} / l\right\rceil$ rows. We form all functions $g_{i t}$ for $t \in S_{i}$, the family of $2^{m_{i}}-1$ nonempty subsets of those rows; $2^{m_{i}}-m_{i}-1$ ORs of previously computed minterms will accomplish that task. We also form all functions $h_{i t}$ representing columns of nonzero type t; for this purpose we'll need at most $2^{n-k}-3$ OR operations in each group i, since we can OR each minterm into the h function of the appropriate type t. Finally we compute $f=\bigvee_{i=1}^{l} \bigvee_{t \in S_{i}}\left(g_{i t} \wedge h_{i t}\right)$. The total cost is at most

$$
\begin{equation*}
t(k)+t(n-k)+(l-1)+\sum_{i=1}^{l}\left(\left(2^{m_{i}}-m_{i}-1\right)+\left(2^{n-k}-3\right)+\left(2^{m_{i}}-2\right)\right) \tag{38}
\end{equation*}
$$

thus we want to choose k and l so that this upper bound is minimized. Exercise 52 discusses the best choice when n is small. And when n is large, a good choice yields a provably near-optimum chain, at least for most functions:

Theorem L. Let $C(n)$ denote the cost of the most expensive Boolean functions of n variables. Then as $n \rightarrow \infty$ we have

$$
\begin{align*}
& C(n) \geq \frac{2^{n}}{n}\left(1+\frac{\lg n}{n}+O\left(\frac{1}{n}\right)\right) \tag{39}\\
& C(n) \leq \frac{2^{n}}{n}\left(1+3 \frac{\lg n}{n}+O\left(\frac{1}{n}\right)\right) \tag{4o}
\end{align*}
$$

Proof. Exercise 48 shows that the lower bound (39) is a consequence of Theorem S. For the upper bound, we set $k=\lfloor 2 \lg n\rfloor$ and $l=\left\lceil 2^{k} /(n-3 \lg n)\right\rceil$ in Lupanov's method; see exercise 53.

Synthesizing a good chain. Formula (37) isn't the best way to implement a 6bit prime detector, but it does suggest a decent strategy. For example, we needn't let variables x_{1} and x_{2} govern the rows: Exercise 51 shows that a better chain results if the rows are based on $x_{5} x_{6}$ while the columns come from $x_{1} x_{2} x_{3} x_{4}$, and in general there are many ways to partition a truth table by playing k of the variables against the other $n-k$.

Furthermore, we can improve on (37) by using our complete knowledge of all 4 -variable functions; there's no need to evaluate a function like $\left[x_{3} x_{4} x_{5} x_{6} \in\right.$ $\{0010,0101,1011\}]$ by first computing the minterms of $\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}$, if we know the best way to evaluate every such function from scratch. On the other hand, we do need to evaluate several 4 -variable functions simultaneously, so the minterm approach might not be such a bad idea after all. Can we really improve on it?

Let's try to find a good way to synthesize a Boolean chain that computes a given set of 4 -variable functions. The six functions of $x_{3} x_{4} x_{5} x_{6}$ in (37) are rather tame (see exercise 54), so we'll learn more by considering a more interesting example chosen from everyday life.

A seven-segment display is a now-ubiquitous way to represent a 4-bit number $\left(x_{1} x_{2} x_{3} x_{4}\right)_{2}$ in terms of seven cleverly positioned segments that are either visible or invisible. The segments are traditionally named (a, b, c, d, e, f, g) as shown; we get a ' 0 ' by turning on segments (a, b, c, d, e, f), but a ' 1 ' uses only segments (b, c). (Incidentally, the idea for such displays was invented by F. W.
 Wood, U.S. Patent 974943 (1910), although Wood's original design used eight segments because he thought that a ' 4 ' requires a diagonal stroke.) Seven-segment displays usually support only the decimal digits ' 0 ', ' 1 ', ..., ' 9 '; but of course a computer scientist's digital watch should display also hexadecimal digits. So we shall design seven-segment logic that displays the sixteen digits

0123456789 RbadEF

when given the respective inputs $x_{1} x_{2} x_{3} x_{4}=0000,0001,0010, \ldots, 1111$.
In other words, we want to evaluate seven Boolean functions whose truth tables are respectively

$$
\begin{aligned}
& a=1011011111100011, \\
& b=1111100111100100 \\
& c=1101111111110100 \\
& d=1011011011011110 \\
& e=1010001010111111, \\
& f=1000111111110011, \\
& g=0011111011111111
\end{aligned}
$$

If we simply wanted to evaluate each function separately, several methods that we've already discussed would tell us how to do it with minimum $\operatorname{costs} C(a)=5$, $C(b)=C(c)=C(d)=6, C(e)=C(f)=5$, and $C(g)=4$; the total cost for all seven functions would then be 37. But we want to find a single Boolean chain that contains them all, and the shortest such chain is presumably much more efficient. How can we discover it?

Well, the task of finding a truly optimum chain for $\{a, b, c, d, e, f, g\}$ is probably infeasible from a computational standpoint. But a surprisingly good solution can be found with the help of the "footprint" idea explained earlier. Namely, we know how to compute not only a function's minimum cost, but also the set of all first steps consistent with that minimum cost in a normal chain. Function e, for example, has cost 5 , but only if we evaluate it by starting with one of the instructions

$$
x_{5}=x_{1} \oplus x_{4} \quad \text { or } \quad x_{5}=x_{2} \wedge \bar{x}_{3} \quad \text { or } \quad x_{5}=x_{2} \vee x_{3}
$$

Fortunately, one of the desirable first steps belongs to four of the seven footprints: Functions c, d, f, and g can all be evaluated optimally by starting with $x_{5}=x_{2} \oplus x_{3}$. So that is a natural choice; it essentially saves us three steps, because we know that at most 33 of the original 37 steps will be needed to finish.

Now we can recompute the costs and footprints of all 2^{16} functions, proceeding as before but also initializing the cost of the new function x_{5} to zero. The costs of functions c, d, f, and g decrease by 1 as a result, and the footprints change too. For example, function a still has cost 5 , but its footprint has increased from $\left\{x_{1} \oplus x_{3}, x_{2} \wedge x_{3}\right\}$ to $\left\{x_{1} \oplus x_{3}, x_{1} \wedge x_{4}, \bar{x}_{1} \wedge x_{4}, x_{2} \wedge x_{3}, \bar{x}_{2} \wedge x_{4}\right.$, $\left.x_{2} \oplus x_{4}, x_{4} \wedge x_{5}, x_{4} \oplus x_{5}\right\}$ when the function $x_{5}=x_{2} \oplus x_{3}$ is available for free.

In fact, $x_{6}=\bar{x}_{1} \wedge x_{4}$ is common to four of the new footprints, so again we have a natural way to proceed. And when everything is recalculated with zero cost given to both x_{5} and x_{6}, the subsequent step $x_{7}=x_{4} \oplus x_{5}$ turns out to be desirable in three of the newest footprints. Continuing in this "greedy" fashion, we aren't always so lucky, but a remarkable chain of only 22 steps does emerge:

$$
\begin{align*}
& x_{5}=x_{2} \oplus x_{3}, \quad x_{13}=x_{7} \oplus x_{10}, \\
& x_{6}=\bar{x}_{1} \wedge x_{4}, \quad x_{14}=x_{5} \wedge x_{13} \text {, } \\
& x_{7}=x_{4} \oplus x_{5}, \quad \bar{b}=x_{15}=x_{9} \oplus x_{14}, \\
& x_{8}=x_{1} \oplus x_{2}, \quad x_{16}=x_{5} \oplus x_{6} \text {, } \tag{43}\\
& x_{9}=x_{3} \wedge \bar{x}_{6}, \quad x_{17}=x_{3} \wedge \bar{x}_{15}, \\
& x_{10}=x_{8} \wedge \bar{x}_{9}, \quad \bar{a}=x_{18}=\bar{x}_{17} \wedge x_{16}, \\
& x_{19}=x_{9} \vee x_{14} \text {, } \\
& \bar{d}=x_{12}=x_{7} \wedge \bar{x}_{11}, \quad \bar{c}=x_{20}=\bar{x}_{8} \wedge x_{19}, \\
& x_{21}=x_{7} \wedge x_{10}, \\
& \bar{e}=x_{22}=x_{6} \vee x_{21} \text {, } \\
& x_{23}=x_{5} \vee x_{6}, \\
& \bar{f}=x_{24}=\bar{x}_{8} \wedge x_{15}, \\
& x_{25}=x_{1} \vee x_{5}, \\
& g=x_{26}=x_{9} \vee x_{25} \text {. }
\end{align*}
$$

(This is a normal chain, so it contains the normalizations $\{\bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}, \bar{f}, g\}$ instead of $\{a, b, c, d, e, f, g\}$. Simple changes will produce the unnormalized functions without changing the cost.)
Partial functions. In practice the output value of a Boolean function is often specified only at certain inputs $x_{1} \ldots x_{n}$, and the outputs in other cases don't really matter. We might know, for example, that some of the input combinations
will never arise. In such cases, we place an asterisk into the corresponding positions of the truth table, instead of specifying 0 or 1 everywhere.

The seven-segment display provides a case in point, because most of its applications involve only the ten binary-coded decimal inputs for which we have $\left(x_{1} x_{2} x_{3} x_{4}\right)_{2} \leq 9$. We don't care what segments are visible in the other six cases. So the truth tables of (42) actually become

$$
\begin{array}{rl}
a & =10110111 \\
b & 11 * * * * * *, \\
c & =11111001 \\
111 * * * * * *, \tag{44}\\
c & 1111 \\
11 * * * * * *, \\
d & 10110110 \\
11 * * * * * *, \\
e & =10100010 \\
f & 10 * * * * * *, \\
f & =1000111 * \\
g & =001111 * * * * * *, \\
g & 1110 \\
11 * * * * * *,
\end{array}
$$

(Function f here has an asterisk also in position $x_{1} x_{2} x_{3} x_{4}=0111$, because a ' 7 ' can be displayed as either $\overline{7}$ or 7 . Both of these styles appeared about equally often in the display units available to the author when this section was written. Truncated variants of the and the were sometimes seen in olden days, but they have thankfully disappeared.)

Asterisks in truth tables are generally known as don't-cares - a quaint term that could only have been invented by an electrical engineer. Table 3 shows that the freedom to choose arbitrary outputs is advantageous. For example, there are $\binom{16}{3} 2^{13}=4,587,520$ truth tables with 3 don't-cares; 69% of them cost 4 or less, even though only 21% of the asterisk-free truth tables permit such economy. On the other hand, don't-cares don't save us as much as we might hope; exercise 63 proves that a random function with, say, 30% don't-cares in its truth table tends to save only about 30% of the cost of a fully specified function.

What is the shortest Boolean chain that evaluates the seven partially specified functions in (44)? Our greedy-footprint method adapts itself readily to the presence of don't-cares, because we can OR together the footprints of all 2^{d} functions that match a pattern with d asterisks. The initial costs to evaluate each function separately are now reduced to $C(a)=3, C(b)=C(c)=2, C(d)=5$, $C(e)=2, C(f)=3, C(g)=4$, totalling just 21 instead of 37 . Function g hasn't gotten cheaper, but it does have a larger footprint. Proceeding as before, but taking advantage of the don't-cares, we now can find a suitable chain of length only 13 - a chain with fewer than two operations per output(!):

$$
\begin{array}{lll}
x_{5}=x_{1} \oplus x_{2}, & \bar{e}=x_{10}=x_{4} \vee x_{8}, & \bar{b}=x_{15}=x_{2} \wedge \bar{x}_{13} \\
x_{6}=x_{3} \wedge \bar{x}_{4}, & g=x_{11}=x_{7} \oplus x_{8}, & \bar{c}=x_{16}=\bar{x}_{2} \wedge x_{6} \\
x_{7}=x_{1} \oplus x_{3}, & x_{12}=x_{4} \oplus x_{11}, & \bar{f}=x_{17}=\bar{x}_{5} \wedge x_{9} \tag{45}\\
x_{8}=x_{2} \wedge \bar{x}_{6}, & \bar{d}=x_{13}=x_{10} \wedge x_{12}, & \\
x_{9}=x_{3} \vee x_{4}, & \bar{a}=x_{14}=\bar{x}_{3} \wedge x_{13}, &
\end{array}
$$

Tic-tac-toe. Let's turn now to a slightly larger problem, based on a popular children's game. Two players take turns filling the cells of a 3×3 grid. One player writes \times 's and the other writes O 's, continuing until there either are three

Table 3
THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON'T-CARES AND COST c

	$c=0$	$c=1$	$c=2$	$c=3$	$c=4$	$c=5$	$c=6$	$c=7$
$d=0$	10	60	456	2474	10624	24184	25008	2720
$d=1$	160	960	7296	35040	131904	227296	119072	2560
$d=2$	1200	7200	52736	221840	700512	816448	166144	
$d=3$	5600	33600	228992	831232	2045952	1381952	60192	
$d=4$	18200	108816	666528	2034408	3505344	1118128	3296	
$d=5$	43680	257472	1367776	3351488	3491648	433568	32	
$d=6$	80080	455616	2015072	3648608	1914800	86016		
$d=7$	114400	606944	2115648	2474688	533568	12032		
$d=8$	128660	604756	1528808	960080	71520	896		
$d=9$	114080	440960	707488	197632	4160			
$d=10$	78960	224144	189248	20160				
$d=11$	41440	72064	25472	800				
$d=12$	15480	12360	1280					
$d=13$	3680	800						
$d=14$	480							
$d=15$	32							
$d=16$	1							
d								

X 's or three O's in a straight line (in which case that player wins) or all nine cells are filled without a winner (in which case it's a "cat's game" or tie). For example, the game might proceed thus:
\times has won. Our goal is to design a machine that plays tic-tac-toe optimally making a winning move from each position in which a forced victory is possible, and never making a losing move from a position in which defeat is avoidable.

More precisely, we will set things up so that there are 18 Boolean variables $x_{1}, \ldots, x_{9}, o_{1}, \ldots, o_{9}$, which govern lamps to illuminate cells of the current position. The cells are numbered $\frac{1223}{45 \sqrt{5} 6}$ as on a telephone dial. Cell j displays an \times if $x_{j}=1$, an \bigcirc if $o_{j}=1$, or remains blank if $x_{j}=o_{j}=0$.* We never have $x_{j}=o_{j}=1$, because that would display ' \otimes '. We shall assume that the variables $x_{1} \ldots x_{9} o_{1} \ldots o_{9}$ have been set to indicate a legal position in which nobody has won; the computer plays the X 's, and it is the computer's turn to move. For this purpose we want to define nine functions y_{1}, \ldots, y_{9}, where y_{j} means "change x_{j} from 0 to 1 ." If the current position is a cat's game, we should make $y_{1}=\cdots=y_{9}=0$; otherwise exactly one y_{j} should be equal to 1 , and of course the output value $y_{j}=1$ should occur only if $x_{j}=o_{j}=0$.

With 18 variables, each of our nine functions y_{j} will have a truth table of size $2^{18}=262,144$. It turns out that only 4520 legal inputs $x_{1} \ldots x_{9} o_{1} \ldots o_{9}$ are

[^0]possible, so those truth tables are 98.3% filled with don't-cares. Still, 4520 is uncomfortably large if we hope to design and understand a Boolean chain that makes sense intuitively. Section 7.1 .4 will discuss alternative ways to represent Boolean functions, by which it is often possible to deal with hundreds of variables even though the associated truth tables are impossibly large.

Most functions of 18 variables require more than $2^{18} / 18$ gates, but let's hope we can do better. Indeed, a plausible strategy for making suitable moves in tic-tac-toe suggests itself immediately, in terms of several conditions that aren't hard to recognize:
w_{j}, an \times in cell j will win, completing a line of \times 's;
b_{j}, an O in cell j would lose, completing a line of O 's;
f_{j}, an \times in cell j will give \times two ways to win;
d_{j}, an \bigcirc in cell j would give \bigcirc two ways to win.
For example, \times 's move to the center in (46) was needed to block O, so it was of type b_{5}; fortunately it was also of type f_{5}, forcing a win on the next move.

Let $L=\{\{1,2,3\},\{4,5,6\},\{7,8,9\},\{1,4,7\},\{2,5,8\},\{3,6,9\},\{1,5,9\},\{3,5,7\}\}$ be the set of winning lines. Then we have

$$
\begin{aligned}
m_{j} & =\bar{x}_{j} \wedge \bar{o}_{j} \\
w_{j} & =m_{j} \wedge \bigvee_{\{i, j, k\} \in L}\left(x_{i} \wedge x_{k}\right) \\
b_{j} & =m_{j} \wedge \bigvee_{\{i, j, k\} \in L}\left(o_{i} \wedge o_{k}\right) \\
f_{j} & =m_{j} \wedge S_{2}\left(\left\{\alpha_{i k} \mid\{i, j, k\} \in L\right\}\right) \\
d_{j} & =m_{j} \wedge S_{2}\left(\left\{\beta_{i k} \mid\{i, j, k\} \in L\right\}\right)
\end{aligned}
$$

$$
\text { [moving in cell } j \text { is legal] }
$$

[moving in cell j wins] (48)
[moving in cell j blocks] (49)
[moving in cell j forks] (5o)
[moving in cell j defends] (51)
here $\alpha_{i k}$ and $\beta_{i k}$ denote a single X or O together with a blank, namely

$$
\alpha_{i k}=\left(x_{i} \wedge m_{k}\right) \vee\left(m_{i} \wedge x_{k}\right), \quad \beta_{i k}=\left(o_{i} \wedge m_{k}\right) \vee\left(m_{i} \wedge o_{k}\right)
$$

For example, $b_{1}=m_{1} \wedge\left(\left(o_{2} \wedge o_{3}\right) \vee\left(o_{4} \wedge o_{7}\right) \vee\left(o_{5} \wedge o_{9}\right)\right) ; f_{2}=m_{2} \wedge S_{2}\left(\alpha_{13}, \alpha_{58}\right)=$ $m_{2} \wedge \alpha_{13} \wedge \alpha_{58} ; \quad d_{5}=m_{5} \wedge S_{2}\left(\beta_{19}, \beta_{28}, \beta_{37}, \beta_{46}\right)$.

With these definitions we might try rank-ordering our moves thus:

$$
\left\{w_{1}, \ldots, w_{9}\right\}>\left\{b_{1}, \ldots, b_{9}\right\}>\left\{f_{1}, \ldots, f_{9}\right\}>\left\{d_{1}, \ldots, d_{9}\right\}>\left\{m_{1}, \ldots, m_{9}\right\}
$$

"Win if you can; otherwise block if you can; otherwise fork if you can; otherwise defend if you can; otherwise make a legal move." Furthermore, when choosing
between legal moves it seems sensible to use the ordering

$$
\begin{equation*}
m_{5}>m_{1}>m_{3}>m_{9}>m_{7}>m_{2}>m_{6}>m_{8}>m_{4} \tag{54}
\end{equation*}
$$

because 5 , the middle cell, occurs in four winning lines, while a corner move to $1,3,9$, or 7 occurs in three, and a side cell $2,6,8$, or 4 occurs in only two. We might as well adopt this ordering of subscripts within all five groups of moves $\left\{w_{j}\right\},\left\{b_{j}\right\},\left\{f_{j}\right\},\left\{d_{j}\right\}$, and $\left\{m_{j}\right\}$ in (53).

To ensure that at most one move is chosen, we define $w_{j}^{\prime}, b_{j}^{\prime}, f_{j}^{\prime}, d_{j}^{\prime}, m_{j}^{\prime}$ to mean "a prior choice is better." Thus, $w_{5}^{\prime}=0, w_{1}^{\prime}=w_{5}, w_{3}^{\prime}=w_{1} \vee w_{1}^{\prime}, \ldots$, $w_{4}^{\prime}=w_{8} \vee w_{8}^{\prime}, b_{5}^{\prime}=w_{4} \vee w_{4}^{\prime}, b_{1}^{\prime}=b_{5} \vee b_{5}^{\prime}, \ldots, m_{4}^{\prime}=m_{8} \vee m_{8}^{\prime}$. Then we can complete the definition of a tic-tac-toe automaton by letting

$$
y_{j}=\left(w_{j} \wedge \bar{w}_{j}^{\prime}\right) \vee\left(b_{j} \wedge \bar{b}_{j}^{\prime}\right) \vee\left(f_{j} \wedge \bar{f}_{j}^{\prime}\right) \vee\left(d_{j} \wedge \bar{d}_{j}^{\prime}\right) \vee\left(m_{j} \wedge \bar{m}_{j}^{\prime}\right), \quad \text { for } 1 \leq j \leq 9
$$

So we've constructed 9 gates for the m's, 48 for the w 's, 48 for the b 's, 144 for the α 's and β 's, 35 for the f 's (with the help of Fig. 5), 35 for the d 's, 43 for the primed variables, and 80 for the y 's. Furthermore we can use our knowledge of partial 4 -variable functions to reduce the six operations in (52) to only four,

$$
\begin{equation*}
\alpha_{i k}=\left(x_{i} \oplus x_{k}\right) \vee \overline{\left(o_{i} \oplus o_{k}\right)}, \quad \beta_{i k}=\overline{\left(x_{i} \oplus x_{k}\right)} \vee\left(o_{i} \oplus o_{k}\right) \tag{6}
\end{equation*}
$$

This trick saves 48 gates; so our design has cost 396 gates altogether.
The strategy for tic-tac-toe in $(47)-(56)$ works fine in most cases, but it also has some glaring glitches. For example, it loses ignominiously in the game
the second \times move is d_{3}, defending against a fork by \bigcirc, yet it actually forces \bigcirc to fork in the opposite corner! Another failure arises, for example, after position
 of to the victory for \times that appeared in (46). Exercise 65 patches things up and obtains a fully correct Boolean tic-tac-toe player that needs just 445 gates.
*Functional decomposition. If the function $f\left(x_{1}, \ldots, x_{n}\right)$ can be written in the form $g\left(x_{1}, \ldots, x_{k}, h\left(x_{k+1}, \ldots, x_{n}\right)\right)$, it's usually a good idea to evaluate $y=$ $h\left(x_{k+1}, \ldots, x_{n}\right)$ first and then to compute $g\left(x_{1}, \ldots, x_{k}, y\right)$. Robert L. Ashenhurst inaugurated the study of such decompositions in 1952 [see Annals Computation Lab. Harvard University 29 (1957), 74-116], and observed that there's an easy way to recognize when f has this special property: If we write the truth table for f in a $2^{k} \times 2^{n-k}$ array as in (36), with rows for each setting of $x_{1} \ldots x_{k}$ and columns for each setting of $x_{k+1} \ldots x_{n}$, then the desired subfunctions g and h exist if and only if the columns of this array have at most two different values. For example, the truth table for the function $\left\langle x_{1} x_{2}\left\langle x_{3} x_{4} x_{5}\right\rangle\right\rangle$ is

0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	1
0	0	0	1	0	1	1	1
1	1	1	1	1	1	1	1

when expressed in this two-dimensional form. One type of column corresponds to the case $h\left(x_{k+1}, \ldots, x_{n}\right)=0$; the other corresponds to $h\left(x_{k+1}, \ldots, x_{n}\right)=1$.

In general the variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$ might be partitioned into any two disjoint subsets $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ and $Z=\left\{z_{1}, \ldots, z_{n-k}\right\}$, and we might have $f(x)=g(y, h(z))$. We could test for a (Y, Z) decomposition by looking at the columns of the $2^{k} \times 2^{n-k}$ truth table whose rows correspond to values of y. But there are 2^{n} such ways to partition X; and all of them are potential winners, except for trivial cases when $|Y|=0$ or $|Z| \leq 1$. How can we avoid examining such a humungous number of possibilities?

A practical way to proceed was discovered by V. Y.-S. Shen, A. C. McKellar, and P. Weiner [IEEE Transactions C-20 (1971), 304-309], whose method usually needs only $O\left(n^{2}\right)$ steps to identify any potentially useful partition (Y, Z) that may exist. The basic idea is simple: Suppose $x_{i} \in Z, x_{j} \in Z$, and $x_{m} \in Y$. Define eight binary vectors δ_{l} for $l=\left(l_{1} l_{2} l_{3}\right)_{2}$, where δ_{l} has $\left(l_{1}, l_{2}, l_{3}\right)$ respectively in components (i, j, m), and zeros elsewhere. Consider any randomly chosen vector $x=x_{1} \ldots x_{n}$, and evaluate $f_{l}=f\left(x+\delta_{l}\right)$ for $0 \leq l \leq 7$. Then the four pairs

$$
\begin{equation*}
\binom{f_{0}}{f_{1}} \quad\binom{f_{2}}{f_{3}} \quad\binom{f_{4}}{f_{5}} \quad\binom{f_{6}}{f_{7}} \tag{8}
\end{equation*}
$$

will appear in a 2×4 submatrix of the $2^{k} \times 2^{n-k}$ truth table. So a decomposition is impossible if these pairs are distinct, or if they contain three different values.

Let's call the pairs "good" if they're all equal, or if they have only two different values. Otherwise they're "bad." If f has essentially random behavior, we'll soon find bad pairs if we do this experiment with several different randomly chosen vectors x, because only 88 of the 256 possibilities for $f_{0} f_{1} \ldots f_{7}$ correspond to a good set of pairs; the probability of finding good pairs ten times in a row is only $\left(\frac{88}{256}\right)^{10} \approx .00002$. And when we do discover bad pairs, we can conclude that

$$
\begin{equation*}
x_{i} \in Z \quad \text { and } \quad x_{j} \in Z \quad \Longrightarrow \quad x_{m} \in Z \tag{59}
\end{equation*}
$$

because the alternative $x_{m} \in Y$ is impossible.
Suppose, for example, that $n=9$ and that f is the function whose truth table $11001001000011 \ldots 00101$ consists of the 512 most significant bits of π, in binary notation. (This is the "more-or-less random function" that we studied for $n=4$ in (5) and (6) above.) Bad pairs for the π function are quickly found in each of the cases (i, j, m) for which $m \neq i<j \neq m$. Indeed, in the author's experiments, 170 of those 252 cases were decided immediately; the average number of random x vectors per case was only 1.52 ; and only one case needed as many as eight x 's before bad pairs appeared. Thus (59) holds for all relevant (i, j, m), and the function is clearly indecomposable. In fact, exercise 73 points out that we needn't make 252 tests to establish the indecomposability of this π function; only $\binom{n}{2}=36$ of them would have been sufficient.

Turning to a less random function, let $f\left(x_{1}, \ldots, x_{9}\right)=(\operatorname{det} X) \bmod 2$, where

$$
X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \tag{6o}\\
x_{4} & x_{5} & x_{6} \\
x_{7} & x_{8} & x_{9}
\end{array}\right)
$$

This function does not satisfy condition (59) when $i=1, j=2$, and $m=3$, because there are no bad pairs in that case. But it does satisfy (59) for $4 \leq m \leq 9$ when $\{i, j\}=\{1,2\}$. We can denote this behavior by the convenient abbreviation ' $12 \Rightarrow 456789$ '; the full set of implications, for all pairs $\{i, j\}$, is

$12 \Rightarrow 456789$	$18 \Rightarrow 34569$	$27 \Rightarrow 34569$	$37 \Rightarrow 24568$	$48 \Rightarrow 12369$	$67 \Rightarrow 12358$
$13 \Rightarrow 456789$	$19 \Rightarrow 24568$	$28 \Rightarrow 134679$	$38 \Rightarrow 14567$	$49 \Rightarrow 12358$	$68 \Rightarrow 12347$
$14 \Rightarrow 235689$	$23 \Rightarrow 456789$	$29 \Rightarrow 14567$	$39 \Rightarrow 124578$	$56 \Rightarrow 123789$	$69 \Rightarrow 124578$
$15 \Rightarrow 36789$	$24 \Rightarrow 36789$	$34 \Rightarrow 25789$	$45 \Rightarrow 123789$	$57 \Rightarrow 12369$	$78 \Rightarrow 123456$
$16 \Rightarrow 25789$	$25 \Rightarrow 134679$	$35 \Rightarrow 14789$	$46 \Rightarrow 123789$	$58 \Rightarrow 134679$	$79 \Rightarrow 123456$
$17 \Rightarrow 235689$	$26 \Rightarrow 14789$	$36 \Rightarrow 124578$	$47 \Rightarrow 235689$	$59 \Rightarrow 12347$	$89 \Rightarrow 123456$

(see exercise 69). Bad pairs are a little more difficult to find when we probe this function at random: The average number of x 's needed in the author's experiments rose to about 3.6 , when bad pairs did exist. And of course there was a need to limit the testing, by choosing a tolerance threshold t and then giving up when t consecutive trials failed to find any bad pairs. Choosing $t=10$ would have found all but 8 of the 198 implications listed above.

Implications like (59) are Horn clauses, and we know from Section 7.1.1 that it's easy to make further deductions from Horn clauses. Indeed, the method of exercise 74 will deduce that the only possible partition with $|Z|>1$ is the trivial one $\left(Y=\emptyset, Z=\left\{x_{1}, \ldots, x_{9}\right\}\right)$, after looking at fewer than 50 cases (i, j, m).

Similar results occur when $f\left(x_{1}, \ldots, x_{9}\right)=[\operatorname{per} X>0]$, where per denotes the permanent function. (In this case f tells us if there is a matching in the bipartite subgraph of $K_{3,3}$ whose edges are specified by the variables $x_{1} \ldots x_{9}$.) Now there are just 180 implications,

$12 \Rightarrow 456789$	$18 \Rightarrow 3459$	$27 \Rightarrow 3459$	$37 \Rightarrow 2468$	$48 \Rightarrow 1269$	$67 \Rightarrow 1358$
$13 \Rightarrow 456789$	$19 \Rightarrow 2468$	$28 \Rightarrow 134679$	$38 \Rightarrow 1567$	$49 \Rightarrow 1358$	$68 \Rightarrow 2347$
$14 \Rightarrow 235689$	$23 \Rightarrow 456789$	$29 \Rightarrow 1567$	$39 \Rightarrow 124578$	$56 \Rightarrow 123789$	$69 \Rightarrow 124578$
$15 \Rightarrow 3678$	$24 \Rightarrow 3678$	$34 \Rightarrow 2579$	$45 \Rightarrow 123789$	$57 \Rightarrow 1269$	$78 \Rightarrow 123456$
$16 \Rightarrow 2579$	$25 \Rightarrow 134679$	$35 \Rightarrow 1489$	$46 \Rightarrow 123789$	$58 \Rightarrow 134679$	$79 \Rightarrow 123456$
$17 \Rightarrow 235689$	$26 \Rightarrow 1489$	$36 \Rightarrow 124578$	$47 \Rightarrow 235689$	$59 \Rightarrow 2347$	$89 \Rightarrow 123456$,

only 122 of which would have been discovered with $t=10$ as the cutoff threshold. (The best choice of t is not clear; perhaps it should vary dynamically.) Still, those 122 Horn clauses were more than enough to establish indecomposability.

What about a decomposable function? With $f=\left\langle x_{2} x_{3} x_{6} x_{9}\left\langle x_{1} x_{4} x_{5} x_{7} x_{8}\right\rangle\right\rangle$ we get $i \wedge j \Rightarrow m$ for all $m \notin\{i, j\}$, except when $\{i, j\} \subseteq\{1,4,5,7,8\}$; in the latter case, m must also belong to $\{1,4,5,7,8\}$. Although only 185 of these 212 implications were discovered with tolerance $t=10$, the partition $Y=\left\{x_{2}, x_{3}, x_{6}, x_{9}\right\}$, $Z=\left\{x_{1}, x_{4}, x_{5}, x_{7}, x_{8}\right\}$ emerged quickly as a strong possibility.

Whenever a potential decomposition is supported by the evidence, we need to verify that the corresponding $2^{k} \times 2^{n-k}$ truth table does indeed have only one or two distinct columns. But we're happy to spend 2^{n} units of time on that verification, because we've greatly simplified the evaluation of f.

The comparison function $f=\left[\left(x_{1} x_{2} x_{3} x_{4}\right)_{2} \geq\left(x_{5} x_{6} x_{7} x_{8}\right)_{2}+x_{9}\right]$ is another interesting case. Its 184 potentially deducible implications are

$12 \Rightarrow 3456789$	$18 \Rightarrow 2345679$	$27 \Rightarrow 34689$	$37 \Rightarrow 489$	$48 \Rightarrow 9$	$67 \Rightarrow 23489$
$13 \Rightarrow 2456789$	$19 \Rightarrow 2345678$	$28 \Rightarrow 34679$	$38 \Rightarrow 479$	$49 \Rightarrow 8$	$68 \Rightarrow 23479$
$14 \Rightarrow 2356789$	$23 \Rightarrow 46789$	$29 \Rightarrow 34678$	$39 \Rightarrow 478$	$56 \Rightarrow 1234789$	$69 \Rightarrow 23478$
$15 \Rightarrow 2346789$	$24 \Rightarrow 36789$	$34 \Rightarrow 789$	$45 \Rightarrow 1236789$	$57 \Rightarrow 1234689$	$78 \Rightarrow 349$
$16 \Rightarrow 2345789$	$25 \Rightarrow 1346789$	$35 \Rightarrow 1246789$	$46 \Rightarrow 23789$	$58 \Rightarrow 1234679$	$79 \Rightarrow 348$
$17 \Rightarrow 2345689$	$26 \Rightarrow 34789$	$36 \Rightarrow 24789$	$47 \Rightarrow 389$	$59 \Rightarrow 1234678$	$89 \Rightarrow 4$,

and 145 of them were found when $t=10$. Three decompositions reveal themselves in this case, having $Z=\left\{x_{4}, x_{8}, x_{9}\right\}, Z=\left\{x_{3}, x_{4}, x_{7}, x_{8}, x_{9}\right\}$, and $Z=$ $\left\{x_{2}, x_{3}, x_{4}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$, respectively. Ashenhurst proved that we can reduce f immediately as soon as we find a nontrivial decomposition; the other decompositions will show up later, when we try to reduce the simpler functions g and h.
*Decomposition of partial functions. When the function f is only partially specified, a decomposition with partition (Y, Z) hinges on being able to assign values to the don't-cares so that at most two different columns appear in the corresponding $2^{k} \times 2^{n-k}$ truth table.

Two vectors $u_{1} \ldots u_{m}$ and $v_{1} \ldots v_{m}$ consisting of $0 \mathrm{~s}, 1 \mathrm{~s}$, and $* \mathrm{~s}$ are said to be incompatible if either $u_{j}=0$ and $v_{j}=1$ or $u_{j}=1$ and $v_{j}=0$, for some j equivalently, if the subcubes of the m-cube specified by u and v have no points in common. Consider the graph whose vertices are the columns of a truth table with don't-cares, where $u-v$ if and only if u and v are incompatible. We can assign values to the $*$ s to achieve at most two distinct columns if and only if this graph is bipartite. For if u_{1}, \ldots, u_{l} are mutually compatible, their generalized consensus $u_{1} \sqcup \cdots \sqcup u_{l}$, defined in exercise 7.1.1-32, is compatible with all of them. [See S. L. Hight, IEEE Trans. C-22 (1973), 103-110; E. Boros, V. Gurvich, P. L. Hammer, T. Ibaraki, and A. Kogan, Discrete Applied Math. 62 (1995), 51-75.] Since a graph is bipartite if and only if it contains no odd cycles, we can easily test this condition with a depth-first search (see Section 7.4.1).

Consequently the method of Shen, McKellar, and Weiner works also when don't-cares are present: The four pairs in (58) are considered bad if and only if three of them are mutually incompatible. We can operate almost as before, although bad pairs will naturally be harder to find when there are lots of $*$ (see exercise 72). However, Ashenhurst's theorem no longer applies. When several decompositions exist, they all should be explored further, because they might use different settings of the don't-cares, and some might be better than the others.

Although most functions $f(x)$ have no simple decomposition $g(y, h(z))$, we needn't give up hope too quickly, because other forms like $g\left(y, h_{1}(z), h_{2}(z)\right)$ might well lead to an efficient chain. If, for example, f is symmetric in three of its variables $\left\{z_{1}, z_{2}, z_{3}\right\}$, we can always write $f(x)=g\left(y, S_{12}\left(z_{1}, z_{2}, z_{3}\right), S_{13}\left(z_{1}, z_{2}, z_{3}\right)\right)$, since $S_{12}\left(z_{1}, z_{2}, z_{3}\right)$ and $S_{13}\left(z_{1}, z_{2}, z_{3}\right)$ characterize the value of $z_{1}+z_{2}+z_{3}$. (Notice that just four steps will suffice to compute both S_{12} and S_{13}.)

In general, as observed by H. A. Curtis [JACM 8 (1961), 484-496], $f(x)$ can be expressed in the form $g\left(y, h_{1}(z), \ldots, h_{r}(z)\right)$ if and only if the $2^{k} \times 2^{n-k}$ truth
table corresponding to Y and Z has at most 2^{r} different columns. And when don't-cares are present, the same result holds if and only if the incompatibility graph for Y and Z can be colored with at most 2^{r} colors.

For example, the function $f(x)=(\operatorname{det} X) \bmod 2$ considered above turns out to have eight distinct columns when $Z=\left\{x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$; that's a surprisingly small number, considering that the truth table has 8 rows and 64 columns. From this fact we might be led to discover how to expand a determinant by cofactors of the first row,

$$
f(x)=x_{1} \wedge h_{1}\left(x_{4}, \ldots, x_{9}\right) \oplus x_{2} \wedge h_{2}\left(x_{4}, \ldots, x_{9}\right) \oplus x_{3} \wedge h_{3}\left(x_{4}, \ldots, x_{9}\right)
$$

if we didn't already know such a rule.
When there are $d \leq 2^{r}$ different columns, we can think of $f(x)$ as a function of y and $h(z)$, where h takes each binary vector $z_{1} \ldots z_{n-k}$ into one of the values $\{0,1, \ldots, d-1\}$. Thus $\left(h_{1}, \ldots, h_{r}\right)$ is essentially an encoding of the different column types, and we hope to find very simple functions h_{1}, \ldots, h_{r} that provide such an encoding. Moreover, if d is strictly less than 2^{r}, the function $g\left(y, h_{1}, \ldots, h_{r}\right)$ will have many don't-cares that may well decrease its cost.

The distinct columns might also suggest a function g for which the h 's have don't-cares. For example, we can use $g\left(y_{1}, y_{2}, h_{1}, h_{2}\right)=\left(y_{1} \oplus\left(h_{1} \wedge y_{2}\right)\right) \wedge h_{2}$ when all columns are either $(0,0,0,0)^{T}$ or $(0,0,1,1)^{T}$ or $(0,1,1,0)^{T}$; then the value of $h_{1}(z)$ is arbitrary when z corresponds to an all-zero column. H. A. Curtis has explained how to exploit this idea when $|Y|=1$ and $|Z|=n-1$ [see IEEE Transactions C-25 (1976), 1033-1044].

For a comprehensive discussion of decomposition techniques, see Richard M. Karp, J. Society for Industrial and Applied Math. 11 (1963), 291-335.

Larger values of \boldsymbol{n}. We've been considering only rather tiny examples of Boolean functions. Theorem S tells us that large, random examples are inherently difficult; but practical examples might well be highly nonrandom. So it makes sense to search for simplifications using heuristic methods.

When n grows, the best ways currently known for dealing with Boolean functions generally start with a Boolean chain - not with a huge truth table and they try to improve that chain via "local changes." The chain can be specified by a set of equations. Then, if an intermediate result is used in comparatively few subsequent steps, we can try to eliminate it, temporarily making those subsequent steps into functions of three variables, and reformulating those functions in order to make a better chain when possible.

For example, suppose the gate $x_{i}=x_{j} \circ x_{k}$ is used only once, in the gate $x_{l}=x_{i} \square x_{m}$, so that $x_{l}=\left(x_{j} \circ x_{k}\right) \square x_{m}$. Other gates might already exist, by which we have computed other functions of x_{j}, x_{k}, and x_{m}; and the definitions of x_{j}, x_{k}, and x_{m} may imply that some of the joint values of $\left(x_{j}, x_{k}, x_{m}\right)$ are impossible. Thus we might be able to compute x_{l} from other gates by doing just one further operation. For example, if $x_{i}=x_{j} \wedge x_{k}$ and $x_{l}=x_{i} \vee x_{m}$, and if the values $x_{j} \vee x_{m}$ and $x_{k} \vee x_{m}$ appear elsewhere in the chain, we can set $x_{l}=\left(x_{j} \vee x_{m}\right) \wedge\left(x_{k} \vee x_{m}\right)$; this eliminates x_{i} and reduces the cost by 1. Or if,
say, $x_{j} \wedge\left(x_{k} \oplus x_{m}\right)$ appears elsewhere and we know that $x_{j} x_{k} x_{m} \neq 101$, we can set $x_{l}=x_{m} \oplus\left(x_{j} \wedge\left(x_{k} \oplus x_{m}\right)\right)$.

If x_{i} is used only in x_{l} and x_{l} is used only in x_{p}, then gate x_{p} depends on four variables, and we might be able to reduce the cost by using our total knowledge of four-variable functions, obtaining x_{p} in a better way while eliminating x_{i} and x_{l}. Similarly, if x_{i} appears only in x_{l} and x_{p}, we can eliminate x_{i} if we find a better way to evaluate two different functions of four variables, possibly with don'tcares and with other functions of those four variables available for free. Again, we know how to solve such problems, using the footprint method discussed above.

When no local changes are able to decrease the cost, we can also try local changes that preserve or even increase the cost, in order to discover different kinds of chains that might simplify in other ways. We shall discuss such local search methods extensively in Section 7.10.

Excellent surveys of techniques for Boolean optimization, which electrical engineers call the problem of "multilevel logic synthesis," have been published by R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, Proceedings of the IEEE 78 (1990), 264-300, and in the book Synthesis and Optimization of Digital Circuits by G. De Micheli (McGraw-Hill, 1994).

Lower bounds. Theorem S tells us that nearly every Boolean function of $n \geq 12$ variables is hard to evaluate, requiring a chain whose length exceeds $2^{n} / n$. Yet modern computers, which are built from logic circuits involving electric signals that represent thousands of Boolean variables, happily evaluate zillions of Boolean functions every microsecond. Evidently there are plenty of important functions that can be evaluated quickly, in spite of Theorem S. Indeed, the proof of that theorem was indirect; we simply counted the cases of low cost, so we learned absolutely nothing about any particular examples that might arise in practice. When we want to compute a given function and we can only think of a laborious way to do the job, how can we be sure that there's no tricky shortcut?

The answer to that question is almost scandalous: After decades of concentrated research, computer scientists have been unable to find any explicit family of functions $f\left(x_{1}, \ldots, x_{n}\right)$ whose cost is inherently nonlinear, as n increases. The true behavior is $2^{n} / n$, but no lower bound as strong as $n \log \log \log n$ has yet been proved! Of course we could rig up artificial examples, such as "the lexicographically smallest truth table of length 2^{n} that isn't achievable by any Boolean chain of length $\left\lfloor 2^{n} / n\right\rfloor-1$ "; but such functions are surely not explicit. The truth table of an explicit function $f\left(x_{1}, \ldots, x_{n}\right)$ should be computable in at most, say, $2^{c n}$ units of time for some constant c; that is, the time needed to specify all of the function values should be polynomial in the length of the truth table. Under those ground rules, no family of single-output functions is currently known to have a combinational complexity that exceeds $3 n+O(1)$ as $n \rightarrow \infty$. [See N. Blum, Theoretical Computer Science 28 (1984), 337-345.]

The picture is not totally bleak, because several interesting linear lower bounds have been proved for functions of practical importance. A basic way to obtain such results was introduced by N. P. Red'kin in 1970: Suppose we have
an optimum chain of cost r for $f\left(x_{1}, \ldots, x_{n}\right)$. By setting $x_{n} \leftarrow 0$ or $x_{n} \leftarrow 1$, we obtain reduced chains for the functions $g\left(x_{1}, \ldots, x_{n-1}\right)=f\left(x_{1}, \ldots, x_{n-1}, 0\right)$ and $h\left(x_{1}, \ldots, x_{n-1}\right)=f\left(x_{1}, \ldots, x_{n-1}, 1\right)$, having cost $r-u$ if x_{n} was used as an input to u different gates. Moreover, if x_{n} is used in a "canalizing" gate $x_{i}=x_{n} \circ x_{k}$, where the operator \circ is neither \oplus nor \equiv, some setting of x_{n} will force x_{i} to be constant, thereby further reducing the chain for g or h. Lower bounds on g and/or h therefore lead to a lower bound on f. (See exercises 77-81.)

But where are the proofs of nonlinear lower bounds? Almost every problem with a yes-no answer can be formulated as a Boolean function, so there's no shortage of explicit functions that we don't know how to evaluate in linear time, or even in polynomial time. For example, any directed graph G with vertices $\left\{v_{1}, \ldots, v_{m}\right\}$ can be represented by its adjacency matrix X, where $x_{i j}=$ [$\left.v_{i} \rightarrow v_{j}\right]$; then

$$
\begin{equation*}
f\left(x_{12}, \ldots, x_{1 m}, \ldots, x_{m 1}, \ldots, x_{m(m-1)}\right)=[G \text { has a Hamiltonian path }] \tag{61}
\end{equation*}
$$

is a Boolean function of $n=m(m-1)$ variables. We would dearly love to be able to evaluate this function in, say, n^{4} steps. We do know how to compute the truth table for f in $O\left(m!2^{n}\right)=2^{n+O(\sqrt{n} \log n)}$ steps, since only m ! Hamiltonian paths exist; thus f is indeed "explicit." But nobody knows how to evaluate f in polynomial time, or how to prove that there isn't a $4 n$-step chain.

For all we know, short Boolean chains for f might exist, for each n. After all, Figs. 4 and 5 reveal the existence of fiendishly clever chains even in the cases of 4 and 5 variables. Efficient chains for all of the larger problems that we ever will need to solve might well be "out there" - yet totally beyond our grasp, because we don't have time to find them. Even if an omniscient being revealed the simple chains to us, we might find them incomprehensible, because the shortest proof of their correctness might be longer than the number of cells in our brains.

Theorem S rules out such a scenario for most Boolean functions. But fewer than 2^{100} Boolean functions will ever be of practical importance in the entire history of the world, and Theorem S tells us zilch about them.

In 1974, Larry Stockmeyer and Albert Meyer were, however, able to construct a Boolean function f whose complexity is provably huge. Their f isn't "explicit," in the precise sense described above, but it isn't artificial either; it arises naturally in mathematical logic. Consider symbolic statements such as

```
048+1015\not=1063;
\forallm\existsn(m<n+1);
\foralln\existsm(m+1<n);
\foralla\forallb (b\geqa+2=>\existsab (a<ab\wedgeab<c));
\forallA\forallB(A\equivB&\neg\existsn(n\inA\wedgen\not\inB\veen\inB\wedgen\not\inA));
\forallA(\existsn(n\inA)}=>\existsm(m\inA\wedge\foralln(n\inA=>m\leqn)))
A ( }\exists\textrm{n}(\textrm{n}\in\textrm{A})=>\exists\textrm{m}(\textrm{m}\in\textrm{A}\wedge\forall\textrm{n}(\textrm{n}\in\textrm{A}=>\textrm{m}\geq\textrm{n})))
\existsP\foralla((a\inP&a+3&P)&a<1000);
\forallA\forallB(\forallC\forallc(C\equivA\wedgec\equiv1\veeC\equivB\wedgec=0=>(\foralln(n\inCAn+1\not\inC)|c=1)) =>\negA\equivB).
```

Stockmeyer and Meyer defined a language L by using the 63 -character alphabet

```
\forall\exists\neg()\equiv\epsilon\not\in+\LambdaV=>A}<\leq==\not=\geq>abcdefghijklmnopqABCDEFGHI JKLMNOPQ0123456789
```

and giving conventional meanings to these symbols. Strings of lowercase letters within the sentences of L, like 'ab' in (6_{5}), represent numeric variables, restricted to nonnegative integers; strings of uppercase letters represent set variables, restricted to finite sets of such numbers. For example, (66) means, "For all finite sets A and B, we have $A=B$ if and only if there doesn't exist a number n that is in A but not in B, or in B but not in A." Some of these statements are true; others are false. (See exercise 82.)

All of the strings (62)-(70) belong to L, but the language is actually quite restricted: The only arithmetic operation allowed on a number is to add a constant; we can write ' $a+13$ ' but not ' $a+b$ '. The only relation allowed between a number and a set is elementhood (ϵ or \notin). The only relation allowed between sets is equality (\equiv). Furthermore all variables must be quantified by \exists or \forall.*

Every sentence of L that has length $k \leq n$ can be represented by a binary vector of length $6 n$, with zeros in the last $6(n-k)$ bits. Let $f(x)$ be a Boolean function of $6 n$ variables such that $f(x)=1$ whenever x represents a true sentence of L, and $f(x)=0$ whenever x represents a sentence that is false; the value of $f(x)$ is unspecified when x doesn't represent a meaningful sentence. The truth table for such a function f can be constructed in a finite number of steps, according to theorems of Büchi and Elgot [Zeitschrift für math. Logik und Grundlagen der Math. 6 (1960), 66-92; Transactions of the Amer. Math. Soc. 98 (1961), 21-51]. But "finite" does not mean "feasible": Stockmeyer and Meyer proved that

$$
\begin{equation*}
C(f)>2^{r-5} \quad \text { whenever } n \geq 460+.302 r+5.08 \ln r \text { and } r>36 \tag{71}
\end{equation*}
$$

In particular, we have $C(f)>2^{416}>10^{125}$ when $n=618$. A Boolean chain with that many gates could never be built, since 10^{125} is a generous upper bound on the number of protons in the universe. So this is a fairly small, finite problem that will never be solved.

Details of Stockmeyer and Meyer's proof appear in JACM 49 (2002), 753784. The basic idea is that the language L, though limited, is rich enough to describe truth tables and the complexity of Boolean chains, using fairly short sentences; hence f has to deal with inputs that essentially refer to themselves.
*For further reading. Thousands of significant papers have been written about networks of Boolean gates, because such networks underlie so many aspects of theory and practice. We have focused in this section chiefly on topics that are relevant to computer programming for sequential machines. But other topics have also been extensively investigated, of primary relevance to parallel computation, such as the study of small-depth circuits in which gates can have any number of inputs ("unlimited fan-in"). Ingo Wegener's book The Complexity of

[^1]Boolean Functions (Teubner and Wiley, 1987) provides a good introduction to the entire subject.

We have mostly considered Boolean chains in which all binary operators have equal importance. For our purposes, gates such as \oplus or $\bar{\subset}$ are neither more nor less desirable than gates such as \wedge or \vee. But it's natural to wonder if we can get by with only the monotone operators \wedge and \vee when we are computing a monotone function. Alexander Razborov has developed striking proof techniques to show that, in fact, monotone operators by themselves have inherently limited capabilities. He proved, for example, that all AND-OR chains to determine whether the permanent of an $n \times n$ matrix of 0 s and 1 s is zero or nonzero must have cost $n^{\Omega(\log n)}$. [See Doklady Akademii Nauk SSSR 281 (1985), 798801; Matematicheskie Zametki 37 (1985), 887-900.] By contrast, we will see in Section 7.5 .1 that this problem, equivalent to "bipartite matching," is solvable in only $O\left(n^{2.5}\right)$ steps. Furthermore, the efficient methods in that section can be implemented as Boolean chains of only slightly larger cost, when we allow negation or other Boolean operations in addition to \wedge and \vee. (Vaughan Pratt has called this "the power of negative thinking.") An introduction to Razborov's methods appears in exercises 85 and 86 .

EXERCISES

1. [24] The "random" function in formula (6) corresponds to a Boolean chain of cost 4 and depth 4 . Find a formula of depth 3 that has the same cost.
2. [21] Show how to compute (a) $w \oplus\langle x y z\rangle$ and (b) $w \wedge\langle x y z\rangle$ with formulas that have depth 3 and cost 5.
3. [M23] (B. I. Finikov, 1957.) If the Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is true at exactly k points, prove that $L(f)<2 n+(k-2) 2^{k-1}$. Hint: Think of $k=3$ and $n=10^{6}$.
4. [M26] (P. M. Spira, 1971.) Prove that the minimum depth and formula length of a Boolean function satisfy $\lg L(f)<D(f) \leq \alpha \lg L(f)+1$, where $\alpha=2 / \lg \left(\frac{3}{2}\right) \approx 3.419$. Hint: Every binary tree with $r \geq 3$ internal nodes contains a subtree with s internal nodes, where $\frac{1}{3} r \leq s<\frac{2}{3} r$.

- 5. [21] The Fibonacci threshold function $F_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle x_{1}^{F_{1}} x_{2}^{F_{2}} \ldots x_{n-1}^{F_{n-1}} x_{n}^{F_{n-2}}\right\rangle$ was analyzed in exercise 7.1.1-101, when $n \geq 3$. Is there an efficient way to evaluate it?

6. [20] True or false: A Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ is normal if and only if it satisfies the general distributive law $f\left(x_{1}, \ldots, x_{n}\right) \wedge y=f\left(x_{1} \wedge y, \ldots, x_{n} \wedge y\right)$.
7. [20] Convert the Boolean chain ' $x_{5}=x_{1} \nabla x_{4}, x_{6}=\bar{x}_{2} \vee x_{5}, x_{7}=\bar{x}_{1} \wedge \bar{x}_{3}$, $x_{8}=x_{6} \equiv x_{7}^{\prime}$ to an equivalent chain $\left(\hat{x}_{5}, \hat{x}_{6}, \hat{x}_{7}, \hat{x}_{8}\right)$ in which every step is normal.

- 8. [20] Explain why (11) is the truth table of variable x_{k}.

9. [20] Algorithm L determines the lengths of shortest formulas for all functions f, but it gives no further information. Extend the algorithm so that it also provides actual minimum-length formulas like (6).

- 10. [20] Modify Algorithm L so that it computes $D(f)$ instead of $L(f)$.
- 11. [22] Modify Algorithm L so that, instead of lengths $L(f)$, it computes upper bounds $U(f)$ and footprints $\phi(f)$ as described in the text.

12. [15] What Boolean chain is equivalent to the minimum-memory scheme (13)?
13. [16] What are the truth tables of $f_{1}, f_{2}, f_{3}, f_{4}$, and f_{5} in example (13)?
14. [22] What's a convenient way to compute the $5 n(n-1)$ truth tables of (17), given the truth table of g ? (Use bitwise operations as in (15) and (16).)
15. [28] Find short-as-possible ways to evaluate the following functions using minimum memory: (a) $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$; (b) $S_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$; (c) the function in (18).
16. [HM33] Prove that fewer than 2^{118} of the 2^{128} Boolean functions $f\left(x_{1}, \ldots, x_{7}\right)$ are computable in minimum memory.

- 17. [25] (M. S. Paterson, 1977.) Although Boolean functions $f\left(x_{1}, \ldots, x_{n}\right)$ cannot always be evaluated in n registers, prove that $n+1$ registers are always sufficient. In other words, show that there is always a sequence of operations like (13) to compute $f\left(x_{1}, \ldots, x_{n}\right)$ if we allow $0 \leq j(i), k(i) \leq n$.
- 18. [35] Investigate optimum minimum-memory computations for $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$: How many classes of five-variable functions have $C_{m}(f)=r$, for $r=0,1,2, \ldots$?

19. [M22] If a Boolean chain uses n variables and has length $r<n+2$, prove that it must be either a "top-down" or a "bottom-up" construction.

- 20. [40] (R. Schroeppel, 2004.) A Boolean chain is canalizing if it does not use the operators \oplus or \equiv. Find the optimum cost, length, and depth of all 4 -variable functions under this constraint. Does the footprint heuristic still give optimum results?

21. [46] For how many four-variable functions did the Harvard researchers discover an optimum vacuum-tube circuit in 1951?
22. [21] Explain the chain for S_{3} in Fig. 6, by noting that it incorporates the chain for S_{23} in Fig. 5. Find a similar chain for $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.

- 23. [23] Figure 6 illustrates only 16 of the 64 symmetric functions on five elements. Explain how to write down optimum chains for the others.

24. [47] Does every symmetric function f have $C_{m}(f)=C(f)$?

- 25. [17] Suppose we want a Boolean chain that includes all functions of n variables: Let $f_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the function whose truth table is the binary representation of k, for $0 \leq k<m=2^{2^{n}}$. What is $C\left(f_{0} f_{1} \ldots f_{m-1}\right)$?

26. [25] True or false: If $f\left(x_{0}, \ldots, x_{n}\right)=\left(x_{0} \wedge g\left(x_{1}, \ldots, x_{n}\right)\right) \oplus h\left(x_{1}, \ldots, h_{n}\right)$, where g and h are nontrivial Boolean functions whose joint cost is $C(g h)$, then $C(f)=2+C(g h)$.

- 27. [23] Can a full adder (22) be implemented in five steps using only minimum memory (that is, completely inside three one-bit registers)?

28. [26] Prove that $C\left(u^{\prime} v^{\prime}\right)=C\left(u^{\prime \prime} v^{\prime \prime}\right)=5$ for the two-output functions defined by

$$
\left(u^{\prime} v^{\prime}\right)_{2}=\left(x+y-(u v)_{2}\right) \bmod 4, \quad\left(u^{\prime \prime} v^{\prime \prime}\right)_{2}=\left(-x-y-(u v)_{2}\right) \bmod 4 .
$$

Use these functions to evaluate $\left[\left(x_{1}+\cdots+x_{n}\right) \bmod 4=0\right]$ in fewer than $2.5 n$ steps.
29. [M28] Prove that the text's circuit for sideways addition (27) has depth $O(\log n)$.
30. [M25] Solve the binary recurrence (28) for the cost $s(n)$ of sideways addition.
31. [21] If $f\left(x_{1}, \ldots, x_{n}\right)$ is symmetric, prove that $C(f) \leq 5 n+O(n / \log n)$.
32. [HM16] Why does the solution to (30) satisfy $t(n)=2^{n}+O\left(2^{n / 2}\right)$?
33. [HM22] True or false: If $1 \leq N \leq 2^{n}$, the first N minterms of $\left\{x_{1}, \ldots, x_{n}\right\}$ can all be evaluated in $N+O(\sqrt{N})$ steps, as $n \rightarrow \infty$ and $N \rightarrow \infty$.

- 34. [22] A priority encoder has $n=2^{m}-1$ inputs $x_{1} \ldots x_{n}$ and m outputs $y_{1} \ldots y_{m}$, where $\left(y_{1} \ldots y_{m}\right)_{2}=k$ if and only if $k=\max \left\{j \mid j=0\right.$ or $\left.x_{j}=1\right\}$. Design a priority encoder that has cost $O(n)$ and depth $O(m)$.

35. [23] If $n>1$, show that the conjunctions $x_{1} \wedge \cdots \wedge x_{k-1} \wedge x_{k+1} \wedge \cdots \wedge x_{n}$ for $1 \leq k \leq n$ can all be computed from $\left(x_{1}, \ldots, x_{n}\right)$ with total cost $\leq 3 n-6$.

- 36. [M28] (R. W. Ladner and M. J. Fischer, 1980.) Let y_{k} be the "prefix" $x_{1} \wedge \cdots \wedge x_{k}$ for $1 \leq k \leq n$. Clearly $C\left(y_{1} \ldots y_{n}\right)=n-1$ and $D\left(y_{1} \ldots y_{n}\right)=\lceil\lg n\rceil$; but we can't simultaneously minimize both cost and depth. Find a chain of optimum depth $\lceil\lg n\rceil$ that has cost $<4 n$.

37. [M28] (Marc Snir, 1986.) Given $n \geq m \geq 1$, consider the following algorithm:

S1. [Upward loop.] For $t \leftarrow 1,2, \ldots,\lceil\lg m\rceil$, set $x_{\min \left(m, 2^{t_{k}}\right)} \leftarrow x_{2^{t}(k-1 / 2)} \wedge$ $x_{\min \left(m, 2^{t} k\right)}$ for $k \geq 1$ and $2^{t}(k-1 / 2)<m$.
S2. [Downward loop.] For $t \leftarrow\lceil\lg m\rceil-1,\lceil\lg m\rceil-2, \ldots, 1$, set $x_{2^{t}(k+1 / 2)} \leftarrow$ $x_{2^{t_{k}}} \wedge x_{2^{t}(k+1 / 2)}$ for $k \geq 1$ and $2^{t}(k+1 / 2)<m$.
S3. [Extension.] For $k \leftarrow m+1, m+2, \ldots, n$, set $x_{k} \leftarrow x_{k-1} \wedge x_{k}$.
a) Prove that this algorithm solves the prefix problem of exercise 36: It transforms $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ into $\left(x_{1}, x_{1} \wedge x_{2}, \ldots, x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}\right)$.
b) Let $c(m, n)$ and $d(m, n)$ be the cost and depth of the corresponding Boolean chain. Prove that, if n is sufficiently large, $c(m, n)+d(m, n)=2 n-2$.
c) Given n, what is $d(n)=\min _{1 \leq m \leq n} d(m, n)$? Show that $d(n)<2 \lg n$.
d) Prove that there's a Boolean chain of cost $2 n-2-d$ and depth d for the prefix problem whenever $d(n) \leq d<n$. (This cost is optimum, by exercise 81.)
38. [25] In Section 5.3 .4 we studied sorting networks, by which $\hat{S}(n)$ comparator modules are able to sort n numbers ($x_{1}, x_{2}, \ldots, x_{n}$) into ascending order. If the inputs x_{j} are 0 s and 1 s , each comparator module is equivalent to two gates ($x \wedge y, x \vee y$); so a sorting network corresponds to a certain kind of Boolean chain, which evaluates n particular functions of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
a) What are the n functions $f_{1} f_{2} \ldots f_{n}$ that a sorting network computes?
b) Show that those functions $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ can be computed in $O(n)$ steps with a chain of depth $O(\log n)$. (Hence sorting networks aren't asymptotically optimal, Booleanwise.)

- 39. [M21] (M. S. Paterson and P. Klein, 1980.) Implement the 2^{m}-way multiplexer $M_{m}\left(x_{1}, \ldots, x_{m}, y_{0}, y_{1}, \ldots, y_{2^{m}-1}\right)$ of (31) with an efficient chain that simultaneously establishes the upper bounds $C\left(M_{m}\right) \leq 2 n+O(\sqrt{n})$ and $D\left(M_{m}\right) \leq m+O(\log m)$.

40. [25] If $n \geq k \geq 1$, let $f_{n k}\left(x_{1}, \ldots, x_{n}\right)$ be the " k in a row" function,

$$
\left(x_{1} \wedge \cdots \wedge x_{k}\right) \vee\left(x_{2} \wedge \cdots \wedge x_{k+1}\right) \vee \cdots \vee\left(x_{n+1-k} \wedge \cdots \wedge x_{n}\right)
$$

Show that the cost $C\left(f_{n k}\right)$ of this function is less than $4 n-3 k$.
41. [M23] (Conditional-sum adders.) One way to accomplish binary addition (25) with depth $O(\log n)$ is based on the multiplexer trick of exercise 4: If $\left(x x^{\prime}\right)_{2}+\left(y y^{\prime}\right)_{2}=$ $\left(z z^{\prime}\right)_{2}$, where $\left|x^{\prime}\right|=\left|y^{\prime}\right|=\left|z^{\prime}\right|$, we have either $(x)_{2}+(y)_{2}=(z)_{2}$ and $\left(x^{\prime}\right)_{2}+\left(y^{\prime}\right)_{2}=\left(z^{\prime}\right)_{2}$, or $(x)_{2}+(y)_{2}+1=(z)_{2}$ and $\left(x^{\prime}\right)_{2}+\left(y^{\prime}\right)_{2}=\left(1 z^{\prime}\right)_{2}$. To save time, we can compute both $(x)_{2}+(y)_{2}$ and $(x)_{2}+(y)_{2}+1$ simultaneously as we compute $\left(x^{\prime}\right)_{2}+\left(y^{\prime}\right)_{2}$. Afterwards, when we know whether or not the less significant part $\left(x^{\prime}\right)_{2}+\left(y^{\prime}\right)_{2}$ produces a carry, we can use multiplexers to select the correct bits for the most significant part.

If this method is used recursively to build $2 n$-bit adders from n-bit adders, how many gates are needed when $n=2^{m}$? What is the corresponding depth?
42. [25] In the binary addition (25), let $u_{k}=x_{k} \wedge y_{k}$ and $v_{k}=x_{k} \oplus y_{k}$ for $0 \leq k<n$.
a) Show that $z_{k}=v_{k} \oplus c_{k}$, where the carry bits c_{k} satisfy

$$
c_{k}=u_{k-1} \vee\left(v_{k-1} \wedge\left(u_{k-2} \vee\left(v_{k-2} \wedge\left(\cdots\left(u_{1} \wedge v_{0}\right) \cdots\right)\right)\right)\right)
$$

b) Let $U_{k}^{k}=0, V_{k}^{k}=1$, and $U_{j}^{k+1}=u_{k} \vee\left(v_{k} \wedge U_{j}^{k}\right), V_{j}^{k+1}=v_{k} \wedge V_{j}^{k}$, for $k \geq j$. Prove that $c_{k}=U_{0}^{k}$, and that $U_{i}^{k}=U_{j}^{k} \vee\left(V_{j}^{k} \wedge U_{i}^{j}\right), V_{i}^{k}=V_{j}^{k} \wedge V_{i}^{j}$ for $i \leq j \leq k$.
c) Let $h(m)=2^{m(m-1) / 2}$. Show that when $n=h(m)$, the carries c_{1}, \ldots, c_{n} can all be evaluated with depth $(m+1) m / 2 \approx \lg n+\sqrt{2 \lg n}$ and with total cost $O\left(2^{m} n\right)$.
43. [28] A finite state transducer is an abstract machine with a finite input alphabet A, a finite output alphabet B, and a finite set of internal states Q. One of those states, q_{0}, is called the "initial state." Given a string $\alpha=a_{1} \ldots a_{n}$, where each $a_{j} \in A$, the machine computes a string $\beta=b_{1} \ldots b_{n}$, where each $b_{j} \in B$, as follows:

T1. [Initialize.] Set $j \leftarrow 1$ and $q \leftarrow q_{0}$.
T2. [Done?] Terminate the algorithm if $j>n$.
T3. [Output b_{j}.] Set $b_{j} \leftarrow c\left(q, a_{j}\right)$.
T4. [Advance j.] Set $q \leftarrow d\left(q, a_{j}\right), j \leftarrow j+1$, and return to step T2. I
The machine has built-in instructions that specify $c(q, a) \in B$ and $d(q, a) \in Q$ for every state $q \in Q$ and every character $a \in A$. The purpose of this exercise is to show that, if the alphabets A and B of any finite state transducer are encoded in binary, the string β can be computed from α by a Boolean chain of size $O(n)$ and depth $O(\log n)$.
a) Consider the problem of changing a binary vector $a_{1} \ldots a_{n}$ to $b_{1} \ldots b_{n}$ by setting

$$
b_{j} \leftarrow a_{j} \oplus\left[a_{j}=a_{j-1}=\cdots=a_{j-k}=1 \text { and } a_{j-k-1}=0, \text { where } k \text { is odd }\right],
$$

assuming that $a_{0}=0$. For example, $\alpha=1100100100011111101101010 \mapsto \beta=$ 1000100100010101001001010. Prove that this transformation can be carried out by a finite state transducer with $|A|=|B|=|Q|=2$.
b) Suppose a finite state transducer is in state q_{j} after reading $a_{1} \ldots a_{j-1}$. Explain how to compute the sequence $q_{1} \ldots q_{n}$ with a Boolean chain of cost $O(n)$ and depth $O(\log n)$, using the construction of Ladner and Fischer in exercise 36. (From this sequence $q_{1} \ldots q_{n}$ it is easy to compute $b_{1} \ldots b_{n}$, since $b_{j}=c\left(q_{j}, a_{j}\right)$.)
c) Apply the method of (b) to the problem in (a).

- 44. [26] (R. W. Ladner and M. J. Fischer, 1980.) Show that the problem of binary addition (25) can be viewed as a finite state transduction. Describe the Boolean chain that results from the construction of exercise 43 when $n=2^{m}$, and compare it to the conditional-sum adder of exercise 41.

45. [HM20] Why doesn't the proof of Theorem S simply argue that the number of ways to choose $j(i)$ and $k(i)$ so that $1 \leq j(i), k(i)<i$ is $n^{2}(n+1)^{2} \ldots(n+r-1)^{2}$?

- 46. [HM21] Let $\alpha(n)=c\left(n,\left\lfloor 2^{n} / n\right\rfloor\right) / 2^{2^{n}}$ be the fraction of n-variable Boolean functions $f\left(x_{1}, \ldots, x_{n}\right)$ for which $C(f) \leq 2^{n} / n$. Prove that $\alpha(n) \rightarrow 0$ rapidly as $n \rightarrow \infty$.

47. [M23] Extend Theorem S to functions with n inputs and m outputs.
48. [HM23] Find the smallest integer $r=r(n)$ such that $(r-1)!2^{2^{n}} \leq 2^{2 r+1}(n+r-1)^{2 r}$, (a) exactly when $1 \leq n \leq 16$; (b) asymptotically when $n \rightarrow \infty$.
49. [HM25] Prove that, as $n \rightarrow \infty$, almost all Boolean functions $f\left(x_{1}, \ldots, x_{n}\right)$ have minimum formula length $L(f)>2^{n} / \lg n-2^{n+2} /(\lg n)^{2}$.
50. [24] What are the prime implicants and prime clauses of the prime-number function (35)? Express that function in (a) DNF (b) CNF of minimum length.
51. [20] What representation of the prime-number detector replaces (37), if rows of the truth table are based on $x_{5} x_{6}$ instead of $x_{1} x_{2}$?
52. [23] What choices of k and l minimize the upper bound (38) when $5 \leq n \leq 16$?
53. [HM22] Estimate (38) when $k=\lfloor 2 \lg n\rfloor$ and $l=\left\lceil 2^{k} /(n-3 \lg n)\right\rceil$ and $n \rightarrow \infty$.
54. [29] Find a short Boolean chain to evaluate all six of the functions $f_{j}(x)=$ $\left[x_{1} x_{2} x_{3} x_{4} \in A_{j}\right]$, where $A_{1}=\{0010,0101,1011\}, A_{2}=\{0001,1111\}, A_{3}=\{0011,0111$, $1101\}, A_{4}=\{1001,1111\}, A_{5}=\{1101\}, A_{6}=\{0101,1011\}$. (These six functions appear in the prime-number detector (37).) Compare your chain to the minterm-first evaluation scheme of Lupanov's general method.
55. [34] Show that the cost of the 6 -bit prime-detecting function is at most 14.

- 56. [16] Explain why all functions with 14 or more don't-cares in Table 3 have cost 0 .

57. [19] What seven-segment "digits" are displayed when $\left(x_{1} x_{2} x_{3} x_{4}\right)_{2}>9$ in (45)?
-58. [30] A 4×4-bit S-box is a permutation of the 4 -bit vectors $\{0000,0001, \ldots, 1111\}$; such permutations are used as components of well-known cryptographic systems such as the Russian standard GOST 28147 (1989). Every 4×4-bit S-box corresponds to a sequence of four functions $f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \ldots, f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, which transform $x_{1} x_{2} x_{3} x_{4} \mapsto f_{1} f_{2} f_{3} f_{4}$.

Find all 4×4-bit S-boxes for which $C\left(f_{1}\right)=C\left(f_{2}\right)=C\left(f_{3}\right)=C\left(f_{4}\right)=7$.
59. [29] One of the S-boxes satisfying the conditions of exercise 58 takes $(0, \ldots, f) \mapsto$ $(0,6,5, \mathrm{~b}, 3,9, \mathbf{f}, \mathrm{e}, \mathrm{c}, 4,7,8, \mathrm{~d}, 2, \mathrm{a}, 1)$; in other words, the truth tables of ($f_{1}, f_{2}, f_{3}, f_{4}$) are respectively (179a, $63 \mathrm{e} 8,5 \mathrm{~b} 26,3 \mathrm{e} 29$). Find a Boolean chain that evaluates these four "maximally difficult" functions in fewer than 20 steps.
60. [23] (Frank Ruskey.) Suppose $z=(x+y) \bmod 3$, where $x=\left(x_{1} x_{2}\right)_{2}, y=\left(y_{1} y_{2}\right)_{2}$, $z=\left(z_{1} z_{2}\right)_{2}$, and each two-bit value is required to be either 00,01 , or 10 . Compute z_{1} and z_{2} from x_{1}, x_{2}, y_{1}, and y_{2} in six Boolean steps.
61. [34] Continuing exercise 60 , find a good way to compute $z=(x+y) \bmod 5$, using the three-bit values $000,001,010,011,100$.
62. [HM23] Consider a random Boolean partial function of n variables that has $2^{n} c$ "cares" and $2^{n} d$ "don't-cares," where $c+d=1$. Prove that the cost of almost all such partial functions exceeds $2^{n} c / n$.
63. [HM35] (L. A. Sholomov, 1969.) Continuing exercise 62, prove that all such functions have cost $\leq 2^{n} c / n\left(1+O\left(n^{-1} \log n\right)\right)$. Hint: There is a set of $2^{m}(1+k)$ vectors $x_{1} \ldots x_{k}$ that intersects every $(k-m)$-dimensional subcube of the k-cube.
64. [25] (Magic Fifteen.) Two players alternately select digits from 1 to 9 , using no digit twice; the winner, if any, is the first to get three digits that sum to 15 . What's a good strategy for playing this game?
-65. [35] Modify the tic-tac-toe strategy of (47)-(56) so that it always plays correctly.
66. [20] Criticize the moves chosen in exercise 65. Are they always optimum?
67. [40] Instead of simply finding one correct move for each position in tic-tac-toe, we might prefer to find them all. In other words, given $x_{1} \ldots x_{9} o_{1} \ldots o_{9}$, we could try to compute nine outputs $g_{1} \ldots g_{9}$, where $g_{j}=1$ if and only if a move into cell j is among X 's best. For example, exclamation marks indicate all of the right moves for X in the following typical positions:

A machine that chooses randomly among these possibilities is more fun to play against than a machine that has only one fixed strategy.

One attractive way to solve the all-good-moves problem is to use the fact that tic-tac-toe has eight symmetries. Imagine a chip that has 18 inputs $x_{1} \ldots x_{9} o_{1} \ldots x_{9}$ and three outputs (c, s, m), for "center," "side," and "middle," with the property that the desired functions g_{j} can be computed by hooking together eight of the chips appropriately:

$$
\begin{aligned}
& g_{1}=c\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} O_{1} O_{2} \mathrm{O}_{3} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{O}_{6} \mathrm{O}_{7} \mathrm{O}_{8} \mathrm{O}_{9}\right) \\
& \vee c\left(x_{1} x_{4} x_{7} x_{2} x_{5} x_{8} x_{3} x_{6} x_{9} o_{1} o_{4} O_{7} O_{2} O_{5} O_{8} O_{3} O_{6} O_{9}\right), \\
& g_{2}=s\left(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} O_{1} O_{2} O_{3} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{O}_{6} \mathrm{O}_{7} \mathrm{O}_{8} \mathrm{O}_{9}\right) \\
& \vee s\left(x_{3} x_{2} x_{1} x_{6} x_{5} x_{4} x_{9} x_{8} x_{7} O_{3} O_{2} O_{1} O_{6} O_{5} O_{4} O_{9} O_{8} O_{7}\right), \\
& g_{3}=c\left(x_{3} x_{2} x_{1} x_{6} x_{5} x_{4} x_{9} x_{8} x_{7} O_{3} O_{2} O_{1} O_{6} O_{5} O_{4} O_{9} O_{8} O_{7}\right) \\
& \vee c\left(x_{3} x_{6} x_{9} x_{2} x_{5} x_{8} x_{1} x_{4} x_{7} O_{3} O_{6} O_{9} O_{2} O_{5} O_{8} O_{1} O_{4} O_{7}\right), \\
& g_{4}=s\left(x_{1} x_{4} x_{7} x_{2} x_{5} x_{8} x_{3} x_{6} x_{9} O_{1} O_{4} O_{7} O_{2} O_{5} O_{8} O_{3} O_{6} O_{9}\right) \\
& \vee s\left(x_{7} x_{4} x_{1} x_{8} x_{5} x_{2} x_{9} x_{6} x_{3} O_{7} O_{4} o_{1} o_{8} O_{5} O_{2} o_{9} O_{6} O_{3}\right), \\
& g_{9}=c\left(x_{9} x_{8} x_{7} x_{6} x_{5} x_{4} x_{3} x_{2} x_{1} \mathrm{O}_{9} \mathrm{O}_{8} \mathrm{O}_{7} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{1}\right) \\
& \vee c\left(x_{9} x_{6} x_{3} x_{8} x_{5} x_{2} x_{7} x_{4} x_{1} O_{9} O_{6} O_{3} O_{8} O_{5} O_{2} O_{7} O_{4} O_{1}\right),
\end{aligned}
$$

and g_{5} is the OR of the m outputs from all eight chips.
Design such a chip, using fewer than 2000 gates.
68. [M25] Consider the n-bit π function $\pi_{n}\left(x_{1} \ldots x_{n}\right)$, whose value is the $\left(x_{1} \ldots x_{n}\right)_{2}$ th bit to the right of the most significant bit in the binary representation of π. Does the method of exercise 4.3.1-39, which describes an efficient way to compute arbitrary bits of π, prove that $C\left(\pi_{n}\right)<2^{n} / n$ for sufficiently large n ?
69. [M24] Let the multilinear representation of f be
$\alpha_{000} \oplus \alpha_{001} x_{m} \oplus \alpha_{010} x_{j} \oplus \alpha_{011} x_{j} x_{m} \oplus \alpha_{100} x_{i} \oplus \alpha_{101} x_{i} x_{m} \oplus \alpha_{110} x_{i} x_{j} \oplus \alpha_{111} x_{i} x_{j} x_{m}$,
where each coefficient α_{l} is a function of the variables $\left\{x_{1}, \ldots, x_{n}\right\} \backslash\left\{x_{i}, x_{j}, x_{m}\right\}$.
a) Prove that the pairs $\left(5^{8}\right)$ are "good" if and only if the coefficients satisfy

$$
\alpha_{010} \alpha_{101}=\alpha_{011} \alpha_{100}, \quad \alpha_{101} \alpha_{110}=\alpha_{100} \alpha_{111}, \quad \text { and } \quad \alpha_{110} \alpha_{011}=\alpha_{111} \alpha_{010}
$$

b) For which values (i, j, m) are the pairs bad, when $f=(\operatorname{det} X) \bmod 2$? (See (6o).)

- 70. [M27] Let X be the 3×3 Boolean matrix (6o). Find efficient chains for the Boolean functions (a) $(\operatorname{det} X) \bmod 2 ;(b)[\operatorname{per} X>0]$; (c) $[\operatorname{det} X>0]$.
- 71. [M26] Suppose $f(x)$ is equal to 0 with probability p at each point $x=x_{1} \ldots x_{n}$, independent of its value at other points.
a) What is the probability that the pairs (58) are good?
b) What is the probability that bad pairs (58) exist?
c) What is the probability that bad pairs $\left(5^{8}\right)$ are found in at most t random trials?
d) What is the expected time to test case (i, j, m), as a function of p, t, and n ?

72. [M24] Extend the previous exercise to the case of partial functions, where $f(x)=$ 0 with probability $p, f(x)=1$ with probability q, and $f(x)=*$ with probability r.

- 73. [20] If bad pairs (58) exist for all (i, j, m) with $m \neq i \neq j \neq m$, show that the indecomposability of f can be deduced after testing only $\binom{n}{2}$ well-chosen triples (i, j, m).

74. [25] Extend the idea in the previous exercise, suggesting a strategy for choosing successive triples (i, j, m) when using the method of Shen, McKellar, and Weiner.
75. [20] What happens when the text's decomposition procedure is applied to the "all-equal" function $S_{0 n}\left(x_{1}, \ldots, x_{n}\right)$?

- 76. [M25] (D. Uhlig, 1974.) The purpose of this exercise is to prove the amazing fact that, for certain functions f, the best chain to evaluate the Boolean function

$$
F\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)=f\left(u_{1}, \ldots, u_{n}\right) \vee f\left(v_{1}, \ldots, v_{n}\right)
$$

costs less than $2 C(f)$; hence functional decomposition is not always a good idea.
We let $n=m+2^{m}$ and write $f\left(i_{1}, \ldots, i_{m}, x_{0}, \ldots, x_{2^{m}-1}\right)=f_{i}(x)$, where i is regarded as the number $\left(i_{1} \ldots i_{m}\right)_{2}$. Then $\left(u_{1}, \ldots, u_{n}\right)=\left(i_{1}, \ldots, i_{m}, x_{0}, \ldots, x_{2^{m}-1}\right)$, $\left(v_{1}, \ldots, v_{n}\right)=\left(j_{1}, \ldots, j_{m}, y_{0}, \ldots, y_{2^{m}-1}\right)$, and $F(u, v)=f_{i}(x) \vee f_{j}(y)$.
a) Prove that a chain of $\operatorname{cost} O(n / \log n)^{2}$ suffices to evaluate the $2^{m}+1$ functions

$$
z_{l}=x \oplus(([l \leq i] \oplus[i \leq j]) \wedge(x \oplus y)), \quad 0 \leq l \leq 2^{m}
$$

from given vectors i, j, x, and y; each z_{l} is a vector of length 2^{m}.
b) Let $g_{i}(x)=f_{i}(x) \oplus f_{i-1}(x)$ for $0 \leq i \leq 2^{m}$, where $f_{-1}(x)=f_{2^{m}}(x)=0$. Estimate the cost of computing the $2^{m}+1$ values $c_{l}=g_{l}\left(z_{l}\right)$, given the vectors z_{l}, for $0 \leq l \leq 2^{m}$.
c) Let $c_{l}^{\prime}=c_{l} \wedge([i \leq j] \equiv[l \leq i])$ and $c_{l}^{\prime \prime}=c_{l} \wedge([i \leq j] \equiv[j>l])$. Prove that

$$
f_{i}(x)=c_{0}^{\prime} \oplus c_{1}^{\prime} \oplus \cdots \oplus c_{2 m}^{\prime}, \quad f_{j}(y)=c_{0}^{\prime \prime} \oplus c_{1}^{\prime \prime} \oplus \cdots \oplus c_{2 m}^{\prime \prime}
$$

d) Conclude that $C(F) \leq 2^{n} / n+O\left(2^{n}(\log n) / n^{2}\right)$. (When n is sufficiently large, this cost is definitely less than $2^{n+1} / n$, but functions f exist with $C(f)>2^{n} / n$.)
e) For clarity, write out the chain for F when $m=1$ and $f\left(i, x_{0}, x_{1}\right)=\left(i \wedge x_{0}\right) \vee x_{1}$.

- 77. [35] (N. P. Red'kin, 1970.) Suppose a Boolean chain uses only the operations AND, OR, or NOT; thus, every step is either $x_{i}=x_{j(i)} \wedge x_{k(i)}$ or $x_{i}=x_{j(i)} \vee x_{k(i)}$ or $x_{i}=\bar{x}_{j(i)}$. Prove that if such a chain computes either the "odd parity" function $f_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \oplus \cdots \oplus x_{n}$ or the "even parity" function $\bar{f}_{n}\left(x_{1}, \ldots, x_{n}\right)=1 \oplus x_{1} \oplus$ $\cdots \oplus x_{n}$, where $n \geq 2$, the length of the chain is at least $4(n-1)$.

78. [26] (W. J. Paul, 1977.) Let $f\left(x_{1}, \ldots, x_{m}, y_{0}, \ldots, y_{2^{m}-1}\right)$ be any Boolean function that equals y_{k} whenever $\left(x_{1} \ldots x_{m}\right)_{2}=k \in S$, for some given set $S \subseteq\left\{0,1, \ldots, 2^{m}-1\right\}$; we don't care about the value of f at other points. Show that $C(f) \geq 2\|S\|-2$ whenever S is nonempty. (In particular, when $S=\left\{0,1, \ldots, 2^{m}-1\right\}$, the multiplexer chain of exercise 39 is asymptotically optimum.)
79. [32] (C. P. Schnorr, 1976.) Say that variables u and v are "mates" in a Boolean chain if there is exactly one simple path between them in the corresponding binary tree diagram. Two variables can be mates only if they are each used only once in the chain; but this necessary condition is not sufficient. For example, variables 2 and 4 are mates in the chain for S_{123} in Fig. 5, but they are not mates in the chain for S_{2}.
a) Prove that a Boolean chain on n variables with no mates has cost $\geq 2 n-2$.
b) Prove that $C(f)=2 n-3$ when f is the all-equal function $S_{0 n}\left(x_{1}, \ldots, x_{n}\right)$.
80. [M27] (L. J. Stockmeyer, 1977.) Another notation for symmetric functions is sometimes convenient: If $\alpha=a_{0} a_{1} \ldots a_{n}$ is any binary string, let $S_{\alpha}(x)=a_{\nu x}$. For example, $\left\langle x_{1} x_{2} x_{3}\right\rangle=S_{0011}$ and $x_{1} \oplus x_{2} \oplus x_{3}=S_{0101}$ in this notation. Notice that $S_{\alpha}\left(0, x_{2}, \ldots, x_{n}\right)=S_{\alpha^{\prime}}\left(x_{2}, \ldots, x_{n}\right)$ and $S_{\alpha}\left(1, x_{2}, \ldots, x_{n}\right)=S_{\prime}^{\prime}\left(x_{2}, \ldots, x_{n}\right)$, where α^{\prime} and ' α stand respectively for α with its last or first element deleted. Also,

$$
S_{\alpha}\left(f\left(x_{3}, \ldots, x_{n}\right), \bar{f}\left(x_{3}, \ldots, x_{n}\right), x_{3}, \ldots, x_{n}\right)=S_{\alpha^{\prime}}\left(x_{3}, \ldots, x_{n}\right)
$$

when f is any Boolean function of $n-2$ variables.
a) A parity function has $a_{0} \neq a_{1} \neq a_{2} \neq \cdots \neq a_{n}$. Assume that $n \geq 2$. Prove that if S_{α} is not a parity function and $S^{\prime} \alpha^{\prime}$ isn't constant, then

$$
C\left(S_{\alpha}\right) \geq \max \left(C\left(S_{\alpha^{\prime}}\right)+2, C\left(S_{\prime \alpha}\right)+2, \min \left(C\left(S_{\alpha^{\prime}}\right)+3, C\left(S_{\prime \alpha}\right)+3, C\left(S_{\prime \alpha^{\prime}}\right)+5\right)\right)
$$

b) What lower bounds on $C\left(S_{k}\right)$ and $C\left(S_{\geq k}\right)$ follow from this result, when $0 \leq k \leq n$?
81. [23] (M. Snir, 1986.) Show that any chain of cost c and depth d for the prefix problem of exercise 36 has $c+d \geq 2 n-2$.
82. [M23] Explain the logical sentences (62)-(70). Which of them are true?
83. [21] If there's a Boolean chain for $f\left(x_{1}, \ldots, x_{n}\right)$ that contains p canalizing operations, show that $C(f)<(p+1)(n+p / 2)$.
84. [M20] A monotone Boolean chain is a Boolean chain in which every operator o_{i} is monotone. The length of a shortest monotone chain for f is denoted by $C^{+}(f)$. If there's a monotone Boolean chain for $f\left(x_{1}, \ldots, x_{n}\right)$ that contains p occurrences of \wedge and q occurrences of \vee, show that $C^{+}(f)<\min ((p+1)(n+p / 2),(q+1)(n+q / 2))$.
85. [M22] Let M_{n} be the set of all monotone functions of n variables. If L is a family of functions contained in M_{n}, let

$$
x \sqcup y=\bigwedge\{z \in L \mid z \supseteq x \vee y\} \quad \text { and } \quad x \sqcap y=\bigwedge\{z \in L \mid z \subseteq x \wedge y\}
$$

We call L "legitimate" if it includes the constant functions 0 and 1 as well as the projection functions x_{j} for $1 \leq j \leq n$, and if $x \sqcup y \in L, x \sqcap y \in L$ whenever $x, y \in L$.
a) When $n=3$ we can write $M_{3}=\{00,01,03,05,11,07,13,15,0 f, 33,55,17,1 \mathrm{f}$, $37,57,3 f, 5 f, 77, f f\}$, representing each function by its hexadecimal truth table. There are 2^{15} families L such that $\{00,0 f, 33,55, \mathrm{ff}\} \subseteq L \subseteq M_{3}$; how many of them are legitimate?
b) If A is a subset of $\{1, \ldots, n\}$, let $\lceil A\rceil=\bigvee_{a \in A} x_{a}$; also let $\lceil\infty\rceil=1$. Suppose \mathcal{A} is a family of subsets of $\{1, \ldots, n\}$ that contains all sets of size ≤ 1 and is closed under intersection; in other words, $A \cap B \in \mathcal{A}$ whenever $A \in \mathcal{A}$ and $B \in \mathcal{A}$. Prove that the family $L=\{\lceil A\rceil \mid A \in \mathcal{A} \cup\{\infty\}\}$ is legitimate.
c) Let $\left(x_{n+1}, \ldots, x_{n+r}\right)$ be a monotone Boolean chain (1). Suppose ($\hat{x}_{n+1}, \ldots, \hat{x}_{n+r}$) is obtained from the same Boolean chain, but with every operator \wedge changed to \sqcap and with every operator \vee changed to \sqcup, with respect to some legitimate family L. Prove that, for $n+1 \leq l \leq n+r$, we must have

$$
\begin{aligned}
& \hat{x}_{l} \subseteq x_{l} \vee \bigvee_{i=n+1}^{l}\left\{\hat{x}_{i} \oplus\left(\hat{x}_{j(i)} \vee \hat{x}_{k(i)}\right) \mid \circ_{i}=\vee\right\} \\
& x_{l} \subseteq \hat{x}_{l} \vee \bigvee_{i=n+1}^{l}\left\{\hat{x}_{i} \oplus\left(\hat{x}_{j(i)} \wedge \hat{x}_{k(i)}\right) \mid \circ_{i}=\wedge\right\}
\end{aligned}
$$

86. [HM37] A graph G on vertices $\{1, \ldots, n\}$ can be defined by $N=\binom{n}{2}$ Boolean variables $x_{u v}$ for $1 \leq u<v \leq n$, where $x_{u v}=[u-v$ in $G]$. Let f be the function $f(x)=[G$ contains a triangle $]$; for example, when $n=4, f\left(x_{12}, x_{13}, x_{14}, x_{23}, x_{24}, x_{34}\right)=$ $\left(x_{12} \wedge x_{13} \wedge x_{23}\right) \vee\left(x_{12} \wedge x_{14} \wedge x_{24}\right) \vee\left(x_{13} \wedge x_{14} \wedge x_{34}\right) \vee\left(x_{23} \wedge x_{24} \wedge x_{34}\right)$. The purpose of this exercise is to prove that the monotone complexity $C^{+}(f)$ is $\Omega(n / \log n)^{3}$.
a) If $u_{j}-v_{j}$ for $1 \leq j \leq r$ in a graph G, call $S=\left\{\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{r}, v_{r}\right\}\right\}$ an r family, and let $\Delta(S)=\bigcup_{1 \leq i<j \leq r}\left(\left\{u_{i}, v_{i}\right\} \cap\left\{u_{j}, v_{j}\right\}\right)$ be the elements of its pairwise intersections. Say that G is r-closed if we have $u-v$ whenever $\Delta(S) \subseteq\{u, v\}$ for some r-family S. It is strongly r-closed if, in addition, we have $|\Delta(S)| \geq 2$ for all r-families S. Prove that a strongly r-closed graph is also strongly $(r+1)$-closed.
b) Prove that the complete bigraph $K_{m, n}$ is strongly r-closed when $r>\max (m, n)$.
c) Prove that a strongly r-closed graph has at most $(r-1)^{2}$ edges.
d) Let L be the family of functions $\{1\} \cup\{\lceil G\rceil \mid G$ is a strongly r-closed graph on $\{1, \ldots, n\}\}$. (See exercise 85(b); we regard G as a set of edges. For example, when the edges are $1-3,1-4,2-3,2-4$, we have $\lceil G\rceil=x_{13} \vee x_{14} \vee x_{23} \vee x_{24}$.) Is L legitimate?
e) Let $x_{N+1}, \ldots, x_{N+p+q}=f$ be a monotone Boolean chain with $p \wedge$-steps and q \checkmark-steps, and consider the modified chain $\hat{x}_{N+1}, \ldots, \hat{x}_{N+p+q}=\hat{f}$ based on the family L in (d). If $\hat{f} \neq 1$, show that $2(r-1)^{3} p+(r-1)^{2}(n-2) \geq\binom{ n}{3}$. Hint: Use the second formula in exercise 85(c).
f) Furthermore, if $\hat{f}=1$ we must have $r^{2} q \geq 2^{r-1}$.
g) Therefore $p=\Omega(n / \log n)^{3}$. Hint: Let $r \approx 6 \lg n$ and apply exercise 84 .
87. [M20] Show that when nonmonotonic operations are permitted, the triangle function of exercise 86 has $\operatorname{cost} C(f)=O\left(n^{\lg 7}(\log n)^{2}\right)=O\left(n^{2.81}\right)$. Hint: A graph has a triangle if and only if the cube of its adjacency matrix has a nonzero diagonal.

SECTION 7.1.2

1. $\left(\left(x_{1} \vee x_{4}\right) \wedge x_{2}\right) \equiv\left(x_{1} \vee x_{3}\right)$.
2. (a) $(w \oplus(x \wedge y)) \oplus((x \oplus y) \wedge z) ;(b)(w \wedge(x \vee y)) \wedge((x \wedge y) \vee z)$.
3. [Doklady Akademii Nauk SSSR 115 (1957), 247-248.] Construct a $k \times n$ matrix whose rows are the vectors x where $f(x)=1$. By permuting and/or complementing variables, we may assume that the top row is $1 \ldots 1$ and that the columns are sorted. Suppose there are l distinct columns. Then $f=g \wedge h$, where g is the AND of the expressions $\left(x_{j-1} \equiv x_{j}\right)$ over all $1<j \leq n$ such that column $j-1$ equals column j, and h is the OR of k minterms of length l, using one variable from each group of equal columns. For example, if $n=8$ and if f is 1 at the $k=3$ points 11111111, 00001111, 00110111, then $l=4$ and $f(x)$ equals $\left(x_{1} \equiv x_{2}\right) \wedge\left(x_{3} \equiv x_{4}\right) \wedge\left(x_{6} \equiv x_{7}\right) \wedge\left(x_{7} \equiv x_{8}\right) \wedge$ $\left(\left(x_{1} \wedge x_{3} \wedge x_{5} \wedge x_{6}\right) \vee\left(\bar{x}_{1} \wedge \bar{x}_{3} \wedge x_{5} \wedge x_{6}\right) \vee\left(\bar{x}_{1} \wedge x_{3} \wedge \bar{x}_{5} \wedge x_{6}\right)\right)$. The length of this formula in general is $2 n+(k-2) l-1$, and we have $l \leq 2^{k-1}$.

Notice that, if k is large, we get shorter formulas by writing $f(x)$ as a disjunction $f_{1}(x) \vee \cdots \vee f_{r}(x)$, where each f_{j} has most $\lceil k / r\rceil 1$ s. Thus

$$
L(f) \leq \min _{r \geq 1}\left(r-1+\left(2 n+\lceil k / r-2\rceil 2^{\lceil k / r-1\rceil}\right) r\right)
$$

4. The first inequality is obvious, because a binary tree of depth d has at most $1+2+\cdots+2^{d-1}=2^{d}-1$ internal nodes.

The hint follows because we can find a minimal subtree of size $\geq\lfloor r / 3\rfloor$. Its size s is at most $1+2(\lfloor r / 3\rfloor-1)$. Therefore we can write $f=\left(g ? f_{1}: f_{0}\right)$, where g is a subformula of size $s ; f_{0}$ and f_{1} are the formulas of size $r-s-1$ obtained when that subformula is replaced by 0 and 1 , respectively.

Let $d(r)=\max \{D(f) \mid L(f)=r\}$. Since the mux function has depth 2 , and since $\max (s, r-s-1)<\left\lceil\frac{2 r}{3}\right\rceil$, we have $d(r) \leq 2+d\left(\left\lceil\frac{2 r}{3}\right\rceil-1\right)$ for $r \geq 3$, and the result follows by induction on r. [Hawaii International Conf. System Sci. 4 (1971), 525-527.]
5. Let $g_{0}=0, g_{1}=x_{1}$, and $g_{j}=x_{j} \wedge\left(x_{j-1} \vee g_{j-2}\right)$ for $j \geq 2$. Then $F_{n}=g_{n} \vee g_{n-1}$, with cost $2 n-2$ and depth n. [These functions g_{j} also play a prominent role in binary addition; see exercises 42 and 44 for ways to compute them with $\operatorname{depth} O(\log n)$.]
6. True: Consider the cases $y=0$ and $y=1$.
7. $\hat{x}_{5}=x_{1} \vee x_{4}, \hat{x}_{6}=\hat{x}_{2} \wedge \hat{x}_{5}, \hat{x}_{7}=x_{1} \vee x_{3}, \hat{x}_{8}=\hat{x}_{6} \oplus \hat{x}_{7}$. (The original chain computes the "random" function (6); see exercise 1. The new chain computes the normalization of that function, namely its complement.)
8. The desired truth table consists of blocks of $2^{n-k} 0 \mathrm{~s}$ alternating with blocks of $2^{n-k} 1 \mathrm{~s}$, as in (7). Therefore, if we multiply by $2^{2^{n-k}}+1$ we get $x_{k}+\left(x_{k} \ll 2^{n-k}\right)$, which is all 1s.
9. When finding $L(f)=\infty$ in step L6, we can store g and h in a record associated with f. Then a recursive procedure will be able to construct a minimum-length formula for f from the respective formulas for g and h.
10. In step L3, use $k=r-1$ instead of $k=r-1-j$. Also change L to D everywhere.
11. The only subtle point is that j should decrease in step U3; then we'll never have $\phi(g) \& \phi(h) \neq 0$ when $j=0$, so all cases of cost $r-1$ will be discovered before we begin to look at list $r-1$.

U1. [Initialize.] Set $U(0) \leftarrow \phi(0) \leftarrow 0$ and $U(f) \leftarrow \infty$ for $1 \leq f<2^{2^{n}-1}$. Then set $U\left(x_{k}\right) \leftarrow \phi\left(x_{k}\right) \leftarrow 0$ and put x_{k} into list 0 , as in step L1. Also set
$U\left(x_{j} \circ x_{k}\right) \leftarrow 1$, set $\phi\left(x_{j} \circ x_{k}\right)$ to an appropriate bit vector of weight 1 , and put $x_{j} \circ x_{k}$ into list 1 , for $1 \leq j<k \leq n$ and all five normal operators \circ. Finally set $c \leftarrow 2^{2^{n}-1}-5\binom{n}{2}-n-1$.
U2. [Loop on r.] Do step U3 for $r=2,3, \ldots$, while $c>0$.
U3. [Loop on j and k.] Do step U4 for $j=\lfloor(r-1) / 2\rfloor,\lfloor(r-1) / 2\rfloor-1, \ldots$, and $k=r-1-j$, while $j \geq 0$.
U4. [Loop on g and h.] Do step U5 for all g in list j and all h in list k; if $j=k$, restrict h to functions that follow g in list k.
U5. [Loop on f.] If $\phi(g) \& \phi(h) \neq 0$, set $u \leftarrow r-1$ and $v \leftarrow \phi(g) \& \phi(h)$; otherwise set $u \leftarrow r$ and $v \leftarrow \phi(g) \mid \phi(h)$. Then do step U6 for $f=g \& h, f=\bar{g} \& h$, $f=g \& \bar{h}, f=g \mid h$, and $f=g \oplus h$.
U6. [Update $U(f)$ and $\phi(f)$.] If $U(f)=\infty$, set $c \leftarrow c-1, \phi(f) \leftarrow v$, and put f into list u. Otherwise if $U(f)>u$, set $\phi(f) \leftarrow v$ and move f from list $U(f)$ to list u. Otherwise if $U(f)=u$, set $\phi(f) \leftarrow \phi(f) \mid v$.
12. $x_{4}=x_{1} \oplus x_{2}, x_{5}=x_{3} \wedge x_{2}, x_{6}=x_{2} \wedge \bar{x}_{4}, x_{7}=x_{5} \vee x_{6}$.
13. $f_{5}=01010101\left(x_{3}\right) ; f_{4}=01110111\left(x_{2} \vee x_{3}\right) ; f_{3}=01110101\left(\left(\bar{x}_{1} \wedge x_{2}\right) \vee x_{3}\right)$; $f_{2}=00110101\left(x_{1} ? x_{3}: x_{2}\right) ; f_{1}=00010111\left(\left\langle x_{1} x_{2} x_{3}\right\rangle\right)$.
14. For $1 \leq j \leq n$, first compute $t \leftarrow\left(g \oplus\left(g \gg 2^{n-j}\right)\right) \& x_{j}, t \leftarrow t \oplus\left(t \ll 2^{n-j}\right)$, where x_{j} is the truth table (11); then for $1 \leq k \leq n$ and $k \neq j$, the desired truth table corresponding to $x_{j} \leftarrow x_{j} \circ x_{k}$ is $g \oplus\left(t \&\left(\left(x_{j} \circ x_{k}\right) \oplus x_{j}\right)\right)$.
(The $5 n(n-1)$ masks $\left(x_{j} \circ x_{k}\right) \oplus x_{j}$ are independent of g and can be computed in advance. The same idea applies if we allow more general computations of the form $x_{j(i)} \leftarrow x_{k(i)} \circ_{i} x_{l(i)}$, with $5 n^{2}(n-1)$ masks $\left(x_{k} \circ x_{l}\right) \oplus x_{j}$.)
15. Remarkably asymmetrical ways to compute symmetrical functions:
(a) $x_{1} \leftarrow x_{1} \oplus x_{2}$,
$x_{3} \leftarrow x_{3} \oplus x_{4}$,
$x_{1} \leftarrow x_{1} \oplus x_{3}$,
(b) $x_{1} \leftarrow x_{1} \oplus x_{2}$,
(c) $x_{1} \leftarrow x_{1} \oplus x_{2}$,
$x_{2} \leftarrow x_{2} \wedge \bar{x}_{1}$,
$x_{2} \leftarrow x_{2} \oplus x_{3}$,
$x_{2} \leftarrow x_{2} \oplus x_{4}$,
$x_{3} \leftarrow x_{3} \oplus x_{4}$,
$x_{2} \leftarrow x_{2} \vee x_{1}$,
$x_{3} \leftarrow x_{3} \vee x_{2}$, $x_{4} \leftarrow x_{4} \wedge x_{1}, \quad x_{1} \leftarrow x_{1} \oplus x_{4}$,
$x_{3} \leftarrow x_{3} \wedge \bar{x}_{1}$.

$$
\begin{array}{ll}
x_{2} \leftarrow \bar{x}_{2} \wedge x_{3}, & x_{1} \leftarrow x_{1} \wedge x_{3} \\
x_{2} \leftarrow x_{2} \oplus x_{1}, & x_{2} \leftarrow x_{2} \wedge \bar{x}_{1} \\
x_{2} \leftarrow x_{2} \wedge \bar{x}_{4} . & x_{2} \leftarrow x_{2} \oplus x_{4}
\end{array}
$$

16. A computation that uses only \oplus and complementation produces nothing but affine functions (see exercise 7.1.1-132). Suppose $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ is a non-affine function computable in minimum memory. Then $f(x)$ has the form $g(A x+c)$ where $g\left(y_{1}, y_{2}, \ldots, y_{n}\right)=g\left(y_{1} \wedge y_{2}, y_{2}, \ldots, y_{n}\right)$, for some nonsingular $n \times n$ matrix A of 0 s and 1 s , where x and c are column vectors and the vector operations are performed modulo 2 ; in this formula the matrix A and vector c account for all operations $x_{i} \leftarrow$ $x_{i} \oplus x_{j}$ and/or permutations and complementations of coordinates that occur after the most recent non-affine operation that was performed. We will exploit the fact that $g\left(0,0, y_{3}, \ldots, y_{n}\right)=g\left(1,0, y_{3}, \ldots, y_{n}\right)$.

Let α and β be the first two rows of A; also let a and b be the first two elements of c. Then if $A x+c \equiv y$ (modulo 2) we have $y_{1}=y_{2}=0$ if and only if $\alpha \cdot x \equiv a$ and $\beta \cdot x \equiv b$. Exactly 2^{n-2} vectors x satisfy this condition, and for all such vectors we have $f(x)=f(x \oplus w)$, where $A w \equiv(1,0, \ldots, 0)^{T}$.

Given α, β, a, b, and w, with $\alpha \neq(0, \ldots, 0), \beta \neq(0, \ldots, 0), \alpha \neq \beta$, and $\alpha \cdot w \equiv 1$ (modulo 2), there are $2^{2^{n}-2^{n-2}}$ functions f with the property that $f(x)=f(x \oplus w)$
whenever $\alpha \cdot x \bmod 2=a$ and $\beta \cdot x \bmod 2=b$. Therefore the total number of functions computable in minimum memory is at most 2^{n+1} (for affine functions) plus

$$
\left(2^{n}-1\right)\left(2^{n}-2\right) 2^{2}\left(2^{n-1}\right)\left(2^{2^{n}-2^{n-2}}\right)<2^{2^{n}-2^{n-2}+3 n+1}
$$

17. Let $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n-1}\right) \oplus\left(h\left(x_{1}, \ldots, x_{n-1}\right) \wedge x_{n}\right)$ as in 7.1.1-(16). Representing h in CNF, form the clauses one by one in x_{0} and AND them into x_{n}, obtaining $h \wedge x_{n}$. Representing g as a sum $(\bmod 2)$ of conjunctions, form the successive conjunctions in x_{0} and XOR them into x_{n} when ready.
(It appears to be impossible to evaluate all functions inside of $n+1$ registers if we disallow the non-canalizing operators \oplus and \equiv. But $n+2$ registers clearly do suffice, even if we restrict ourselves to the single operator $\bar{\pi}$.)
18. As mentioned in answer 14 , we should extend the text's definition of minimummemory computation to allow also steps like $x_{j(i)} \leftarrow x_{k(i)} \circ_{i} x_{l(i)}$, with $k(i) \neq j(i)$ and $l(i) \neq j(i)$, because that will give better results for certain functions that depend on only four of the five variables. Then we find $C_{m}(f)=(0,1, \ldots, 13,14)$ for respectively ($2,2,5,20,93,389,1960,10459,47604,135990,198092,123590,21540,472,0)$ classes of functions . . . leaving 75,908 classes (and $575,963,136$ functions) for which $C_{m}(f)=\infty$ because they cannot be evaluated at all in minimum memory. The most interesting function of that kind is probably $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{4} \wedge x_{5}\right) \vee\left(x_{5} \wedge x_{1}\right)$, which has $C(f)=7$ but $C_{m}(f)=\infty$. Another interesting case is $\left(\left(\left(x_{1} \vee x_{2}\right) \oplus x_{3}\right) \vee\right.$ $\left.\left(\left(x_{2} \vee \bar{x}_{4}\right) \wedge x_{5}\right)\right) \wedge\left(\left(x_{1} \equiv x_{2}\right) \vee x_{3} \vee x_{4}\right)$, for which $C(f)=8$ and $C_{m}(f)=13$. One way to evaluate that function in eight steps is $x_{6}=x_{1} \vee x_{2}, x_{7}=x_{1} \vee x_{4}, x_{8}=x_{2} \oplus x_{7}$, $x_{9}=x_{3} \oplus x_{6}, x_{10}=x_{4} \oplus x_{9}, x_{11}=x_{5} \vee x_{9}, x_{12}=x_{8} \wedge x_{10}, x_{13}=x_{11} \wedge \bar{x}_{12}$.
19. If not, the left and right subtrees of the root must overlap, since case (i) fails. Each variable must occur at least once as a leaf, by hypothesis. At least two variables must occur at least twice as leaves, since case (ii) fails. But we can't have $n+2$ leaves with $r \leq n+1$ internal nodes, unless the subtrees fail to overlap.
20. Now Algorithm L (with ' $f=g \oplus h$ ' omitted in step L5) shows that some formulas must have length 15 ; and even the footprint method of exercise 11 does no better than 14 . To get truly minimum chains, the 25 special chains for $r=6$ in the text must be supplemented by five others that can no longer be ruled out, namely

and when $r=(7,8,9)$ we must also consider respectively $(653,12387,225660)$ additional potential chains that are not special cases of the top-down and bottom-up constructions. Here are the resulting statistics, for comparison with Table 1:

$C_{c}(f)$	$\begin{gathered} \text { Class- } \\ \text { es } \end{gathered}$	Functions	$U_{c}(f)$	$\begin{gathered} \text { Class- } \\ \text { es } \end{gathered}$	Functions	$L_{c}(f)$	$\begin{gathered} \text { Class- } \\ \text { es } \end{gathered}$	Functions	$D_{c}(f)$	$\begin{gathered} \text { Class- } \\ \text { es } \end{gathered}$	Functions
0	2	10	0	2	10	0	2	10	0	2	10
1	1	48	1	1	48	1	1	48	1	1	48
2	2	256	2	2	256	2	2	256	2	7	684
3	7	940	3	7	940	3	7	940	3	59	17064
4	9	2336	4	9	2336	4	7	2048	4	151	47634
5	24	6464	5	21	6112	5	20	5248	5	2	96
6	30	10616	6	28	9664	6	23	8672	6	0	0

7	61	18984	7	45	15128	7	37	11768	7	0	0
8	45	17680	8	40	14296	8	27	10592	8	0	0
9	37	7882	9	23	8568	9	33	11536	9	0	0
10	4	320	10	28	5920	10	16	5472	10	0	0
11	0	0	11	6	1504	11	30	6304	11	0	0
12	0	0	12	5	576	12	3	960	12	0	0
13	0	0	13	3	144	13	8	1472	13	0	0
14	0	0	14	2	34	14	2	96	14	0	0
15	0	0	15	0	0	15	4	114	15	0	0

The two function classes of depth 5 are represented by $S_{24}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $x_{1} \oplus$ $S_{2}\left(x_{2}, x_{3}, x_{4}\right)$; and those two functions, together with $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and the parity function $S_{13}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$, have length 15. Also $U_{c}\left(S_{24}\right)=$ $U_{c}\left(S_{13}\right)=14$. The four classes of cost 10 are represented by $S_{14}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, $S_{24}\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(x_{4} ? x_{1} \oplus x_{2} \oplus x_{3}:\left\langle x_{1} x_{2} x_{3}\right\rangle\right)$, and $\left[\left(x_{1} x_{2} x_{3} x_{4}\right)_{2} \in\{0,1,4,7,10,13\}\right]$. (The third of these, incidentally, is the complement of (20), "Harvard's hardest case.")
21. (The authors stated that their table entries "should be regarded only as the most economical operators known to the present writers.")
22. $\nu\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)=3$ if and only if $\nu\left(x_{1} x_{2} x_{3} x_{4}\right) \in\{2,3\}$ and $\nu\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)$ is odd. Similarly, $S_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=S_{3}\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}, \bar{x}_{5}\right)$ incorporates $S_{12}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$:

23. We need only consider the 32 normal cases, as in Fig. 5, since the complement of a symmetric function is symmetric. Then we can use reflection, like $S_{12}(x)=S_{34}(\bar{x})$, possibly together with complementation, like $S_{2345}(x)=\bar{S}_{01}(x)=\bar{S}_{45}(\bar{x})$, to deduce most of the remaining cases. Of course S_{1}, S_{135}, and S_{12345} trivially have cost 4. That leaves only $S_{1234}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1} \oplus x_{2}\right) \vee\left(x_{2} \oplus x_{3}\right) \vee\left(x_{3} \oplus x_{4}\right) \vee\left(x_{4} \oplus x_{5}\right)$, which is discussed for general n in exercise 79 .
24. As noted in the text, this conjecture holds for $n \leq 5$.
25. It is $2^{2^{n}-1}-n-1$, the number of nontrivial normal functions. (In any normal chain of length r that doesn't include all of these functions, $x_{j} \circ x_{k}$ will be a new function for some j and k in the range $1 \leq j, k \leq n+r$ and some normal binary operator \circ; so we can compute a new function with every new step, until we've got them all.)
26. False. For example, if $g=S_{13}\left(x_{1}, x_{2}, x_{3}\right)$ and $h=S_{23}\left(x_{1}, x_{2}, x_{3}\right)$, then $C(g h)=5$ is the cost of a full adder; but $f=S_{23}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ has cost 6 by Fig. 4.
27. Yes: The operations ' $x_{2} \leftarrow x_{2} \oplus x_{1}, x_{1} \leftarrow x_{1} \oplus x_{3}, x_{1} \leftarrow x_{1} \wedge \bar{x}_{2}, x_{1} \leftarrow x_{1} \oplus x_{3}$, $x_{2} \leftarrow x_{2} \oplus x_{3}$ ' transform $\left(x_{1}, x_{2}, x_{3}\right)$ into $\left(z_{1}, z_{0}, x_{3}\right)$.
28. Let $v^{\prime}=v^{\prime \prime}=v \oplus(x \oplus y) ; u^{\prime}=((v \oplus y) \bar{\subset}(x \oplus y)) \oplus u, u^{\prime \prime}=((v \oplus y) \vee(x \oplus y)) \oplus u$. Thus we can set $u_{0}=0, v_{0}=x_{1}, u_{j}=\left(\left(v_{j-1} \oplus x_{2 j+1}\right) \vee\left(x_{2 j} \oplus x_{2 j+1}\right)\right) \oplus u_{j-1}$ if j is odd, $u_{j}=\left(\left(v_{j-1} \oplus x_{2 j+1}\right) \bar{C}\left(x_{2 j} \oplus x_{2 j+1}\right)\right) \oplus u_{j-1}$ if j is even, and $v_{j}=v_{j-1} \oplus\left(x_{2 j} \oplus x_{2 j+1}\right)$, obtaining $\left(u_{j} v_{j}\right)_{2}=\left(x_{1}+\cdots+x_{2 j+1}\right) \bmod 4$ for $1 \leq j \leq\lfloor n / 2\rfloor$. Set $x_{n+1}=0$ if n is even. The function $\left[\left(x_{1}+\cdots+x_{n}\right) \bmod 4=0\right]=\bar{u}_{\lfloor n / 2\rfloor} \wedge \bar{v}_{\lfloor n / 2\rfloor}$ is thereby computed in $\lfloor 5 n / 2\rfloor-2$ steps.

This construction is due to L. J. Stockmeyer, who proved that it is nearly optimal. In fact, the result of exercise 80 together with Figs. 4 and 5 shows that it is at most one step longer than a best possible chain, for all $n \geq 5$.

Incidentally, the analogous formula $u^{\prime \prime \prime}=((v \oplus y) \wedge(x \oplus y)) \oplus u$ yields $\left(u^{\prime \prime \prime} v^{\prime}\right)_{2}=$ $\left((u v)_{2}+x-y\right) \bmod 4$. The simpler-looking function $\left((u v)_{2}+x+y\right) \bmod 4$ costs 6 , not 5 .
29. To get an upper bound, assume that each full adder or half adder increases the depth by 3. If there are $a_{j d}$ bits of weight 2^{j} and depth $3 d$, we schedule at most $\left\lceil a_{j d} / 3\right\rceil$ subsequent bits of weights $\left\{2^{j}, 2^{j+1}\right\}$ and depth $3(d+1)$. It follows by induction that $a_{j d} \leq\binom{ d}{j} 3^{-d} n+4$. Hence $a_{j d} \leq 5$ when $d \geq \log _{3 / 2} n$, and the overall depth is at most $3 \log _{3 / 2} n+3$. (Curiously, the actual depth turns out to be exactly 100 when $n=10^{7}$.)
30. As usual, let νn denote the sideways addition of the bits in the binary representation of n itself. Then $s(n)=5 n-2 \nu n-3\lfloor\lg n\rfloor-3$.
31. After sideways addition in $s(n)<5 n$ steps, an arbitrary function of $\left(z_{\lfloor\lg n\rfloor}, \ldots, z_{0}\right)$ can be evaluated in $\sim 2 n / \lg n$ steps at most, by Theorem L. [See O. B. Lupanov, Doklady Akademii Nauk SSSR 140 (1961), 322-325.]
32. Bootstrap: First prove by induction on n that $t(n) \leq 2^{n+1}$.
33. False, on a technicality: If, say, $N=\sqrt{n}$, at least n steps are needed. A correct asymptotic formula $N+O(\sqrt{N})+O(n)$ can, however, be proved by first noting that the text's method gives $N+O(\sqrt{N})$ when $N \geq 2^{n-1}$; otherwise, if $\lfloor\lg N\rfloor=n-k-1$, we can use $O(n)$ operations to AND the quantity $\bar{x}_{1} \wedge \cdots \wedge \bar{x}_{k}$ to the other variables x_{k+1}, \ldots, x_{n}, then proceed with n reduced by k.
(One consequence is that we can compute the symmetric functions $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ with cost $s(n)+n+O(\sqrt{n})=6 n+O(\sqrt{n})$ and depth $O(\log n)$.)
34. Say that an extended priority encoder has $n+1=2^{m}$ inputs $x_{0} x_{1} \ldots x_{n}$ and $m+1$ outputs $y_{0} y_{1} \ldots y_{m}$, where $y_{0}=x_{0} \vee x_{1} \vee \cdots \vee x_{n}$. If Q_{m}^{\prime} and $Q_{m}^{\prime \prime}$ are extended encoders for $x_{0}^{\prime} \ldots x_{n}^{\prime}$ and $x_{0}^{\prime \prime} \ldots x_{n}^{\prime \prime}$, then Q_{m+1} works for $x_{0}^{\prime} \ldots x_{n}^{\prime} x_{0}^{\prime \prime} \ldots x_{n}^{\prime \prime}$ if we define $y_{0}=y_{0}^{\prime} \vee y_{0}^{\prime \prime}, y_{1}=y_{0}^{\prime}, y_{2}=y_{1} ? y_{1}^{\prime \prime}: y_{1}^{\prime}, \ldots, y_{m+1}=y_{1} ? y_{m}^{\prime \prime}: y_{m}^{\prime}$. If P_{m}^{\prime} is an ordinary priority encoder for $x_{1}^{\prime} \ldots x_{n}^{\prime}$, we get P_{m+1} for $x_{1}^{\prime} \ldots x_{n}^{\prime} x_{0}^{\prime \prime} \ldots x_{n}^{\prime \prime}$ in a similar way.

Starting with $m=2$ and $y_{2}=x_{3} \vee\left(x_{1} \wedge \bar{x}_{2}\right), y_{1}=x_{2} \vee x_{3}, y_{0}=x_{0} \vee x_{1} \vee y_{1}$, this construction yields P_{m} and Q_{m} of costs p_{m} and q_{m}, where $p_{2}=3, q_{2}=5$, and $p_{m+1}=3 m+p_{m}+q_{m}, q_{m+1}=3 m+1+2 q_{m}$ for $m \geq 2$. Consequently $p_{m}=q_{m}-m$ and $q_{m}=15 \cdot 2^{m-2}-3 m-4 \approx 3.75 n$.
35. If $n=2 m$, compute $x_{1} \wedge x_{2}, \ldots, x_{n-1} \wedge x_{n}$, then recursively form $x_{1} \wedge \cdots \wedge x_{2 k-2} \wedge$ $x_{2 k+1} \wedge \cdots \wedge x_{n}$ for $1 \leq k \leq m$, and finish in n more steps. If $n=2 m-1$, use this chain for $n+1$ elements; three steps can be eliminated by setting $x_{n+1} \leftarrow 1$. [I. Wegener, The Complexity of Boolean Functions (1987), exercise 3.25. The same idea can be used with associative and commutative operator in place of \wedge.]
36. Recursively construct $P_{n}\left(x_{1}, \ldots, x_{n}\right)$ and $Q_{n}\left(x_{1}, \ldots, x_{n}\right)$ as follows, where P_{n} has optimum depth and Q_{n} has depth $\leq\lceil\lg n\rceil+1$: The case $n=1$ is trivial; otherwise P_{n} is obtained from $Q_{r}^{\prime}\left(x_{1}, \ldots, x_{r}\right)$ and $P_{s}^{\prime \prime}\left(x_{r+1}, \ldots, x_{n}\right)$, where $r=\lceil n / 2\rceil$ and $s=\lfloor n / 2\rfloor$, by setting $y_{j}=y_{j}^{\prime}$ for $1 \leq j \leq r, y_{j}=y_{r}^{\prime} \wedge y_{j-r}^{\prime \prime}$ for $r<j \leq n$. And Q_{n} is obtained from either $P_{r}^{\prime}\left(x_{1} \wedge x_{2}, \ldots, x_{n-1} \wedge x_{n}\right)$ or $P_{r}^{\prime}\left(x_{1} \wedge x_{2}, \ldots, x_{n-2} \wedge x_{n-1}, x_{n}\right)$ by setting $y_{2 j}=y_{j}^{\prime}, y_{2 j+1}=y_{j}^{\prime} \wedge x_{2 j+1}$ for $1 \leq j<s$, and $y_{2 s}=y_{s}^{\prime}, y_{n}=y_{r}^{\prime}$.

To prove validity we must show also that output y_{n} of Q_{n} has depth $\lceil\lg n\rceil$; notice that $Q_{2 m+1}$ would fail if we began it with $P_{m}^{\prime}\left(x_{1} \wedge x_{2}, \ldots, x_{2 m-1} \wedge x_{2 m}\right)$ instead of with $P_{m+1}^{\prime}\left(x_{1} \wedge x_{2}, \ldots, x_{2 m-1} \wedge x_{2 m}, x_{2 m+1}\right)$, except when m is a power of 2 .

These calculations can be performed in minimum memory, setting $x_{k(i)} \leftarrow x_{j(i)} \wedge$ $x_{k(i)}$ at step i for some indices $j(i)<k(i)$. Thus we can illustrate the construction with diagrams analogous to the diagrams for sorting networks. For example,

The costs p_{n} and q_{n} satisfy $p_{n}=\lfloor n / 2\rfloor+q_{\lceil n / 2\rceil}+p_{\lfloor n / 2\rfloor}, q_{n}=2\lfloor n / 2\rfloor-1+p_{\lceil n / 2\rceil}$ when $n>1$; for example, $\left(p_{1}, \ldots, p_{7}\right)=\left(q_{1}, \ldots, q_{7}\right)=(0,1,2,4,5,7,9)$. Setting $\bar{p}_{n}=$ $4 n-p_{n}$ and $\bar{q}_{n}=3 n-q_{n}$ leads to simpler formulas, which prove that $p_{n}<4 n$ and $q_{n}<3 n: \bar{q}_{n}=\bar{p}_{[n / 2\rceil}+[n$ even $] ; \bar{p}_{4 n}=\bar{p}_{2 n}+\bar{p}_{n}+1, \bar{p}_{4 n+1}=\bar{p}_{2 n}+\bar{p}_{n+1}+1, \bar{p}_{4 n+2}=$ $\bar{p}_{2 n+1}+\bar{p}_{n+1}, \bar{p}_{4 n+3}=\bar{p}_{4 n+2}+2$. In particular, $1+\bar{p}_{2}{ }^{m}=F_{m+5}$ is a Fibonacci number.
[See JACM 27 (1980), 831-834. Slightly better chains are obtained if we use the otherwise-forbidden $P_{\lfloor n / 2\rfloor}^{\prime}$ construction for Q_{n} when $n=2^{m}+1$, if we replace P_{5} and P_{6} by Q_{5} and Q_{6}, and if we then replace ($P_{9}, P_{10}, P_{11}, P_{17}$) by ($Q_{9}, Q_{10}, Q_{11}, Q_{17}$).]

Notice that this construction works in general if we replace ' \wedge ' by any associative operator. In particular, the sequence of prefixes $x_{1} \oplus \cdots \oplus x_{k}$ for $1 \leq k \leq n$ defines the conversion from Gray binary code to radix-2 integers, Eq. 7.2.1.1-(10).
37. The case $m=15, n=16$ is illustrated at the right.
(a) Let $x_{i . . j}$ denote the original value of $x_{i} \wedge \cdots \wedge x_{j}$. Whenever the algorithm sets $x_{k} \leftarrow x_{j} \wedge x_{k}$, one can show that the previous value of x_{k} was $x_{j+1 . . k}$. After step $\mathrm{S} 1, x_{k}$ is $x_{f(k)+1 . . k}$ where $f(k)=k \&(k-1)$ for $1 \leq k<m$ and $f(m)=0$. After step $\mathrm{S} 2, x_{k}$ is $x_{1 \ldots k}$ for $1 \leq k \leq m$.
(b) The cost of S1 is $m-1$, the cost of S2 is $m-1-\lceil\lg m\rceil$, and the cost of S 3 is $n-m$. The final delay of x_{k} is $\lfloor\lg k\rfloor+\nu k-1$ for $1 \leq k<m$, and it is $\lceil\lg m\rceil+k-m$ for $m \leq k \leq n$. So the maximum delay for $\left\{x_{1}, \ldots, x_{m-1}\right\}$ turns out to be $g(m)=m-1$ for $m<4$, $g(m)=\lfloor\lg m\rfloor+\left\lfloor\lg \frac{m}{3}\right\rfloor$ for $m \geq 4$. We have $c(m, n)=m+n-2-\lceil\lg m\rceil$, $d(m, n)=\max (g(m),\lceil\lg m\rceil+n-m)$. Hence $c(m, n)+d(m, n)=2 n-2$
 whenever $n \geq m+g(m)-\lceil\lg m\rceil$.
(c) A table of values reveals that $d(n)=\lceil\lg n\rceil$ for $n<8$, and $d(n)=\lfloor\lg (n-$ $\lfloor\lg n\rfloor+3)\rfloor+\left\lfloor\lg \frac{2}{3}(n-\lfloor\lg n\rfloor+3)\right\rfloor-1$ for $n \geq 8$. Stating this another way, we have $d(n)>d(n-1)>0$ if and only if $n=2^{k}+k-3$ or $2^{k}+2^{k-1}+k-3$ for some $k>1$. The minimum occurs for $m=n$ when $n<8$; otherwise it occurs for $m=n-\left\lfloor\frac{2}{3}(n-\lfloor\lg n\rfloor+3)\right\rfloor+2-\left[n=2^{k}+k-3\right.$ for some $\left.k\right]$.
(d) Set $m \leftarrow m(n, d)$, where $m(n, d(n))$ is defined in the previous sentence and $m(n, d)=m(n-1, d-1)$ when $d>d(n)$. [See J. Algorithms 7 (1986), 185-201.]
38. (a) From top to bottom, $f_{k}\left(x_{1}, \ldots, x_{n}\right)$ is an elementary symmetric function also called the threshold function $S_{\geq k}\left(x_{1}, \ldots, x_{n}\right)$. (See exercise 5.3.4-28, Eq. 7.1.1-(90).)
(b) After calculating $\left\{S_{1}, \ldots, S_{n}\right\}$ in $\approx 6 n$ steps as in answer 33, we can apply the method of exercise 37 to finish in $2 n$ further steps.

But it is more interesting to design a Boolean chain specifically for the computation of the $2^{m}+1$ threshold functions $g_{k}\left(x_{1}, \ldots, x_{m}\right)=\left[\left(x_{1} \ldots x_{m}\right)_{2} \geq k\right]$ for $0 \leq k \leq 2^{m}$. Since $\left[\left(x^{\prime} x^{\prime \prime}\right)_{2} \geq\left(y^{\prime} y^{\prime \prime}\right)_{2}\right]=\left[\left(x^{\prime}\right)_{2} \geq\left(y^{\prime}\right)_{2}+1\right] \vee\left(\left[\left(x^{\prime}\right)_{2} \geq\left(y^{\prime}\right)_{2}\right] \wedge\left[\left(x^{\prime \prime}\right)_{2} \geq\left(y^{\prime \prime}\right)_{2}\right]\right)$, a divide-and-conquer construction analogous to a binary decoder solves this problem with a cost at most $2 t(m)$.

Furthermore, if $2^{m-1} \leq n<2^{m}$, the cost $u(n)$ of computing $\left\{g_{1}, \ldots, g_{n}\right\}$ by this method turns out to be $2 n+O(\sqrt{n})$, and it is quite reasonable when n is small:

$$
\begin{array}{ccccccccccccccccccccc}
n=1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
u(n) & =0 & 1 & 2 & 4 & 7 & 7 & 8 & 12 & 15 & 17 & 19 & 19 & 20 & 21 & 22 & 27 & 32 & 34 & 36 & 36
\end{array}
$$

Starting with sideways addition, we can sort n Boolean values in $s(n)+u(n) \approx 7 n$ steps. A sorting network, which costs $2 \hat{S}(n)$, is better when $n=4$ but loses when $n \geq$ 8. [See 5.3.4-(11); D. E. Muller and F. P. Preparata, JACM 22 (1975), 195-201.]
39. [IEEE Transactions C-29 (1980), 737-738.] The identity

$$
M_{r+s}\left(x_{1}, \ldots, x_{r}, x_{r+1}, \ldots, x_{r+s}, y_{0}, \ldots, y_{2^{r+s}-1}\right)=M_{r}\left(x_{1}, \ldots, x_{r}, y_{0}^{\prime}, \ldots, y_{2^{r}-1}^{\prime}\right)
$$

where $y_{j}^{\prime}=\bigvee_{k=0}^{2^{s}-1}\left(d_{k} \wedge y_{2^{s}+k}\right)$ and d_{k} is the k th output of an s-to- 2^{s} decoder applied to $\left(x_{r+1}, \ldots, x_{r+s}\right)$, shows that $C\left(M_{r+s}\right) \leq C\left(M_{r}\right)+2^{r+s}+2^{r}\left(2^{s}-1\right)+t(s)$, where $t(s)$ is the cost (30) of the decoder. The depth is $D\left(M_{r+s}\right)=\max \left(D_{x}\left(M_{r+s}\right), D_{y}\left(M_{r+s}\right)\right)$, where D_{x} and D_{y} denote the maximum depth of the x and y variables; we have $D_{x}\left(M_{r+s}\right) \leq \max \left(D_{x}\left(M_{r}\right), 1+s+\lceil\lg s\rceil+D_{y}\left(M_{r}\right)\right)$ and $D_{y}\left(M_{r+s}\right) \leq 1+s+D_{y}\left(M_{r}\right)$.

Taking $r=\lceil m / 2\rceil$ and $s=\lfloor m / 2\rfloor$ yields $C\left(M_{m}\right) \leq 2^{m+1}+O\left(2^{m / 2}\right), D_{y}\left(M_{m}\right) \leq$ $m+1+\lceil\lg m\rceil$, and $D_{x}\left(M_{m}\right) \leq D_{y}\left(M_{m}\right)+\lceil\lg m\rceil$.
40. We can, for example, let $f_{n k}(x)=\bigvee_{j=1}^{n+1-k}\left(l_{j}(x) \wedge r_{j+k-1}(x)\right)$, where

$$
\begin{aligned}
& l_{j}(x)=\left\{\begin{array}{ll}
x_{j}, & \text { if } j \bmod k=0, \\
x_{j} \wedge l_{j+1}(x), & \text { if } j \bmod k \neq 0,
\end{array} \quad \text { for } 1 \leq j \leq n-(n \bmod k) ;\right. \\
& r_{j}(x)=\left\{\begin{array}{ll}
1, & \text { if } j \bmod k=0, \\
x_{j} \wedge r_{j-1}(x), & \text { if } j \bmod k \neq 0,
\end{array} \quad \text { for } k \leq j \leq n .\right.
\end{aligned}
$$

The cost is $4 n-3 k-3\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{n-1}{k}\right\rfloor+2-(n \bmod k)$.
A recursive solution is preferable when n is small or k is small: Observe that

$$
f_{n k}(x)=\left\{\begin{array}{cl}
x_{n-k+1} \wedge \cdots \wedge x_{k} \wedge & \\
f_{(2 n-2 n)(n-k)}\left(x_{1}, \ldots, x_{n-k}, x_{k+1}, \ldots, x_{n}\right), & \text { for } k<n<2 k \\
f_{\lfloor(n+k) / 2\rfloor k}\left(x_{1}, \ldots, x_{\lfloor(n+k) / 2\rfloor}\right) \vee & \\
f_{\lfloor(n+k-1) / 2\rfloor k}\left(x_{\lfloor(n-k) / 2\rfloor+1}, \ldots, x_{n}\right), & \text { for } n \geq 2 k
\end{array}\right.
$$

The cost of this solution can be shown to equal $n-1+\sum_{j=1}^{n-k}\lfloor\lg j\rfloor$ when $k \leq n<2 k$, and it lies asymptotically between $\left(m+\alpha_{k}-1\right) n+O(k m)$ and $\left(m+2-2 / \alpha_{k}\right) n+O(k m)$ as $n \rightarrow \infty$, where $m=\lfloor\lg k\rfloor$ and $1<\alpha_{k}=(k+1) / 2^{m} \leq 2$.

A marriage of these methods is better yet; the optimum cost is unknown.
41. Let $c(m)$ be the cost of computing both $(x)_{2}+(y)_{2}$ and $(x)_{2}+(y)_{2}+1$ by the conditional-sum method when x and y have $n=2^{m}$ bits, and let $c^{\prime}(m)$ be the cost of the simpler problem of computing just $(x)_{2}+(y)_{2}$. Then $c(m+1)=2 c(m)+6 \cdot 2^{m}+2$, $c^{\prime}(m+1)=c(m)+c^{\prime}(m)+3 \cdot 2^{m}+1$. (Bit z_{n} of the sum costs 1 ; but bits z_{k} for $n<k \leq 2 n+1$ cost 3 , because they have the form c ? $a_{k}: b_{k}$ where c is a carry bit.) If we start with $n=1$ and $c(0)=3, c^{\prime}(0)=2$, the solution is $c(m)=(3 m+5) 2^{m}-2$, $c^{\prime}(m)=(3 m+2) 2^{m}-m$. But improved constructions for the case $n=2$ allow us to start with $c(1)=11$ and $c^{\prime}(1)=7$; then the solution is $c(m)=\left(3 m+\frac{7}{2}\right) 2^{m}-2$, $c^{\prime}(m)=\left(3 m+\frac{1}{2}\right) 2^{m}-m+1$. In either case the depth is $2 m+1$. [See J. Sklansky, IRE Transactions EC-9 (1960), 226-231.]
42. (a) Since $\left\langle x_{k} y_{k} c_{k}\right\rangle=u_{k} \vee\left(v_{k} \wedge c_{k}\right)$, we can use (26) and induction.
(b) Notice that $U_{k}^{k+1}=u_{k}$ and $V_{k}^{k+1}=v_{k}$; use induction on $j-i$. [See A. Weinberger and J. L. Smith, IRE Transactions EC-5 (1956), 65-73; R. P. Brent and H. T. Kung, IEEE Transactions C-31 (1982), 260-264.]
(c) First, for $l=1,2, \ldots, m-1$, and for $1 \leq k \leq n$, compute V_{i}^{k} for all multiples i of $h(l)$ in the range $k_{l} \geq i \geq k_{l+1}$, where $k_{l}=h(l)\lfloor(k-1) / h(l)\rfloor$ denotes the largest multiple of $h(l)$ that is less than k. For example, when $l=2$ and $k=99$, we compute $V_{96}^{99}, V_{88}^{99}=V_{96}^{99} \wedge V_{88}^{96}, V_{80}^{99}=V_{88}^{99} \wedge V_{80}^{88}, \ldots, V_{64}^{99}=V_{72}^{99} \wedge V_{64}^{72}$; this is a prefix computation using the values $V_{96}^{99}, V_{88}^{96}, V_{80}^{88}, \ldots, V_{64}^{72}$ that were computed when $l=2$. Using the method of exercise 36, step l adds at most l levels to the depth, and it requires a total of $\left(p_{1}+p_{2}+\cdots+p_{2} l\right) n / 2^{l}=O\left(2^{l} n\right)$ gates.

Then, again for $l=1,2, \ldots, m-1$, and for $1 \leq k \leq n$, compute U_{i}^{k} for $i=k_{l+1}$, using the "unrolled" formula

$$
U_{k_{l+1}}^{k}=U_{k_{l}}^{k} \vee \bigvee_{\substack{k_{l}>j \geq l_{l+1} \\ h(l) \backslash j}}\left(V_{j+h(l)}^{k} \wedge U_{j}^{j+h(l)}\right)
$$

For example, the unrolled formula when $l=3$ and $k=99$ is

$$
U_{64}^{99}=U_{96}^{99} \vee\left(V_{96}^{99} \wedge U_{88}^{96}\right) \vee\left(V_{88}^{99} \wedge U_{80}^{88}\right) \vee\left(V_{80}^{99} \wedge U_{72}^{80}\right) \vee\left(V_{72}^{99} \wedge U_{64}^{72}\right)
$$

Every such U_{i}^{k} is a union of at most 2^{l} terms, so it can be computed with depth $\leq l$ in addition to the depth of each term. The total cost of this phase for $1 \leq k \leq n$ is $\left(0+2+4+\cdots+\left(2^{l}-2\right)\right) n / 2^{l}=O\left(2^{l} n\right)$.

The overall cost to compute all necessary U 's and V 's is therefore $\sum_{l=1}^{m-1} O\left(2^{l} n\right)=$ $O\left(2^{m} n\right)$. (Furthermore the quantities V_{0}^{k} aren't actually needed, so we save the cost of $\sum_{l=1}^{m-1} h(l) p_{2} l$ gates.) For example, when $m=(2,3,4,5)$ we obtain Boolean chains for the addition of $(2,8,64,1024)$-bit numbers, respectively, with overall depths ($3,7,11,16$) and costs $(7,64,1254,48470)$.
[This construction is due to V. M. Khrapchenko, Problemy Kibernetiki 19 (1967), 107-122, who also showed how to combine it with other methods so that the overall cost will be $O(n)$ while still achieving depth $\lg n+O(\sqrt{\log n})$. However, his combined method is purely of theoretical interest, because it requires $n>2^{64}$ before the depth becomes less than $2 \lg n$. Another way to achieve small depth using the recurrences in (b) can be based on the Fibonacci numbers: The Fibonacci method computes the carries with depth $\log _{\phi} n+O(1) \approx 1.44 \lg n$ and $\operatorname{cost} O(n \log n)$. For example, it yields chains for binary addition with the following characteristics:

$n=$	4	8	16	32	64	128	256	512	1024
depth	6	7	9	10	12	13	15	16	18
cost	24	71	186	467	1125	2648	6102	13775	30861

See D. E. Knuth, The Stanford GraphBase (1994), 276-279.
Charles Babbage found an ingenious mechanical solution to the analogous problem for addition in radix 10 , claiming that his design would be able to add numbers of arbitrary precision in constant time. For this to work he would have needed idealized, rigid components with vanishing clearances; the idea isn't applicable to modern computers. See H. P. Babbage, Babbage's Calculating Engines (1889), 334-335.]
43. (a) Let $A=B=Q=\{0,1\}$ and $q_{0}=0$. Define $c(q, a)=d(q, a)=\bar{q} \wedge a$.
(b) The key idea is to construct the functions $d_{1}(q) \ldots d_{n-1}(q)$, where $d_{1}(q)=$ $d\left(q, a_{1}\right)$ and $d_{j+1}(q)=d\left(d_{j}(q), a_{j}\right)$. In other words, $d_{1}=d^{\left(a_{1}\right)}$ and $d_{j+1}=d_{j} \circ d^{\left(a_{j}\right)}$,
where $d^{(a)}$ is the function that takes $q \mapsto d(q, a)$ and where \circ denotes composition of functions. Each function d_{j} can be encoded in binary notation, and \circ is an associative operation on these binary representations. Hence the functions $d_{1} d_{2} \ldots d_{n-1}$ are the prefixes $\left.d^{\left(a_{1}\right)}, d^{\left(a_{1}\right)} \circ d^{\left(a_{2}\right)}, \ldots, d^{\left(a_{1}\right)}\right) \ldots \circ d^{\left(a_{n-1}\right)}$; and $q_{1} q_{2} \ldots q_{n}=q_{0} d_{1}\left(q_{0}\right) \ldots d_{n-1}\left(q_{0}\right)$.
(c) Represent a function $f(q)$ by its truth table $f_{0} f_{1}$. Then the composition $f_{0} f_{1} \circ g_{0} g_{1}$ is $h_{0} h_{1}$, where the functions $h_{0}=f_{0} ? g_{1}: g_{0}$ and $h_{1}=f_{1} ? g_{1}: g_{0}$ are muxes that can each be computed with cost 3 and depth 2. (The combined cost $C\left(h_{0} h_{1}\right)$ is only 5 , but we are trying to keep the depth small.) The truth table for $d^{(a)}$ is $a 0$. Using exercise 36 , we can therefore compute the truth tables $d_{10} d_{11} d_{20} d_{21} \ldots d_{(n-1) 0} d_{(n-1) 1}$ with cost $\leq 6 p_{n-1}<24 n$ and depth $\leq 2\lceil\lg (n-1)\rceil$; then $b_{j}=\bar{q}_{j} \wedge a_{j}=\bar{d}_{(j-1) 0} \wedge a_{j}$. (These cost estimates are quite conservative; substantial simplifications arise because of the 0 s in the initial truth tables of $d^{\left(a_{j}\right)}$ and because many of the intermediate values $d_{j 1}$ are never used. For example, when $n=5$ the actual cost is only 10 , not $6 p_{4}+4=28$; the actual depth is 4 , not $1+2\lceil\lg 4\rceil=5$.)
44. The inputs may be regarded as the string $x_{0} y_{0} x_{1} y_{1} \ldots x_{n-1} y_{n-1}$ whose elements belong to the four-letter alphabet $A=\{00,01,10,11\}$; there are two states $Q=\{0,1\}$, representing a possible carry bit, with $q_{0}=0$; the output alphabet is $B=\{0,1\}$; and we have $c(q, x y)=q \oplus x \oplus y, d(q, x y)=\langle q x y\rangle$. In this case, therefore, the finite state transducer is essentially described by a full adder.

Only three of the four possible functions of q occur when we compose the mappings $d^{(x y)}$. We can encode them as $u \vee(q \wedge v)$. The initial functions $d^{(x y)}$ have $u=x \wedge y, v=$ $x \oplus y$; and the composition $(u v) \circ\left(u^{\prime} v^{\prime}\right)$ is $u^{\prime \prime} v^{\prime \prime}$, where $u^{\prime \prime}=u^{\prime} \vee\left(v^{\prime} \wedge u\right)$ and $v^{\prime \prime}=v \wedge v^{\prime}$.

When $n=4$, for example, the chain has the following form, using the notation of exercise 42: $U_{k}^{k+1}=x_{k} \wedge y_{k}, V_{k}^{k+1}=x_{k} \oplus y_{k}$, for $0 \leq k<4 ; U_{0}^{2}=U_{1}^{2} \vee\left(V_{1}^{2} \wedge U_{0}^{1}\right)$, $U_{2}^{4}=U_{3}^{4} \vee\left(V_{3}^{4} \wedge U_{2}^{3}\right), V_{2}^{4}=V_{2}^{3} \wedge V_{3}^{4} ; U_{0}^{3}=U_{2}^{3} \vee\left(V_{2}^{3} \wedge U_{0}^{2}\right), U_{0}^{4}=U_{2}^{4} \vee\left(V_{2}^{4} \wedge U_{0}^{2}\right)$; $z_{0}=V_{0}^{1}, z_{1}=U_{0}^{1} \oplus V_{1}^{2}, z_{2}=U_{0}^{2} \oplus V_{2}^{3}, z_{3}=U_{0}^{3} \oplus V_{3}^{4}, z_{4}=U_{0}^{4}$. The total cost is 20, and the maximum depth is 5 .

In general the cost will be $2 n+3 p_{n}$ in the notation of exercise 36 , because we need $2 n$ gates for the initial u 's and v 's, then $3 p_{n}$ gates for the prefix computation; the $n-1$ additional gates needed to form z_{j} for $0<j<n$ are compensated by the fact that we need not compute V_{0}^{j} for $1<j \leq n$. Therefore the total cost is $14 \cdot 2^{m}-3 F_{m+5}+3$, clearly superior to the conditional-sum method (which has the same depth $2 m+1$):

$$
\begin{array}{cccccccccccc}
n=2 & 4 & 8 & 16 & 32 & 64 & 128 & 256 & 512 & 1024 \\
\text { cost of conditional-sum chain } & 7 & 25 & 74 & 197 & 492 & 1179 & 2746 & 6265 & 14072 & 31223 \\
\text { cost of Ladner-Fischer chain } & 7 & 20 & 52 & 125 & 286 & 632 & 1363 & 2888 & 6040 & 12509
\end{array}
$$

[George Boole introduced his Algebra in order to show that logic can be understood in terms of arithmetic. Eventually logic became so well understood, the situation was reversed: People like Shannon and Zuse began in the 1930s to design circuits for arithmetic in terms of logic, and since then many approaches to the problem of parallel addition have been discovered. The first Boolean chains of cost $O(n)$ and depth $O(\log n)$ were devised by Yu. P. Ofman, Doklady Akademii Nauk SSSR 145 (1962), 48-51. His chains were similar to the construction above, but the depth was approximately $4 m$.]
45. That argument would indeed be simpler, but it wouldn't be strong enough to prove the desired result. (Many chains with steps of fan-out 0 inflate the simpler estimate.) The text's permutation-enhanced proof technique was introduced by J. E. Savage in his book The Complexity of Computing (New York: Wiley, 1976), Theorem 3.4.1.
46. When $r=2^{n} / n+O(1)$ we have $\ln \left(2^{2 r+1}(n+r-1)^{2 r} /(r-1)!\right)=r \ln r+(1+\ln 4) r+$ $O(n)=\left(2^{n} / n\right)(n \ln 2-\ln n+1+\ln 4)+O(n)$. So $\alpha(n) \leq(n /(4 e))^{-2^{n} / n+O(n / \log n)}$, which approaches zero quite rapidly indeed when $n>4 e$.
(In fact, (3^{2}) gives $\alpha(11)<7.6 \times 10^{7}, \alpha(12)<4.2 \times 10^{-6}, \alpha(13)<1.2 \times 10^{-38}$.)
47. Restrict permutations to the $(r-m)$! cases where $i \pi=i$ for $1 \leq i \leq n$ and $(n+r+1-k) \pi$ is the k th output. Then we get $(r-m)!c(m, n, r) \leq 2^{2 r+1}(n+r-1)^{2 r}$ in place of (32). Hence, as in exercise 46, almost all such functions have cost exceeding $2^{n} m /(n+\lg m)$ when $m=O\left(2^{n} / n^{2}\right)$.
48. (a) Not surprisingly, this lower bound on $C(n)$ is rather crude when n is small:

$$
\begin{array}{ccccccccccccccccc}
n=1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
r(n)=1 & 1 & 2 & 3 & 5 & 9 & 16 & 29 & 54 & 99 & 184 & 343 & 639 & 1196 & 2246 & 4229
\end{array}
$$

(b) The bootstrap method (see Concrete Mathematics $\S 9.4$) yields

$$
r(n)=\frac{2^{n}}{n}\left(1+\frac{\lg n-2-1 / \ln 2}{n}+O\left(\frac{\log n}{n^{2}}\right)\right)
$$

49. The number of normal Boolean functions that can be represented by a formula of length $\leq r$ is at most $5^{r} n^{r+1} g_{r}$, where g_{r} is the number of oriented binary trees with r internal nodes. Set $r=2^{n} / \lg n-2^{n+2} /(\lg n)^{2}$ in this formula and divide by $2^{2^{n}-1}$ to get an upper bound on the fraction of functions with $L(f) \leq r$. The result rapidly approaches zero, by exercise $2.3 .4 .4-7$, because it is $O\left((5 \alpha / 16)^{2^{n} / \lg n}\right)$ where $\alpha \approx 2.483$.
[J. Riordan and C. E. Shannon obtained a similar lower bound for series-parallel switching networks in J. Math. and Physics 21 (1942), 83-93; such networks are equivalent to formulas in which only canalizing operators are used. R. E. Krichevsky obtained more general results in Problemy Kibernetiki 2 (1959), 123-138, and O. B. Lupanov gave an asymptotically matching upper bound in Prob. Kibernetiki 3 (1960), 61-80.]
50. (a) Using subcube notation as in exercise 7.1.1-30, the prime implicants are $00001 *,(0001 * 1), 0100 * 1,0111 * 1,1010 * 1,101 * 11,00 * 011,00 * 101,(01 * 111), 11 * 101$, $(0 * 1101),(1 * 0101), 1 * 1011,0 * 0 * 11, * 00101,(* 01011),(* 11101)$, where the parenthesized subcubes are omitted in a shortest DNF. (b) Similarly, the prime clauses and a shortest CNF are given by $00111 *, 01010 *, 10110 *, 0110 * *, 00 * 00 *, 11 * 00 *, 11 * 11 *$, $(0 * 100 *),(1 * 00 * *), 1 * 0 * 1 *,(1 * * * * 0), * 0000 *,(* 1100 *), * 1 * * * 0, * * 1 * * 0, * * * 1 * 0$, and $(* * * * 00)$. (Thus the CNF is $\left(x_{1} \vee x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4} \vee \bar{x}_{5}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \vee x_{5}\right) \wedge \cdots \wedge\left(\bar{x}_{4} \vee x_{6}\right)$.)
51. $f=\left(\left[x_{5} x_{6} \in\{01\}\right] \wedge\left[\left(x_{1} x_{2} x_{3} x_{4}\right)_{2} \in\{1,3,4,7,9,10,13,15\}\right]\right) \vee\left(\left[x_{5} x_{6} \in\{10,11\}\right] \wedge\right.$ $\left.\left[x_{1} x_{2} x_{3} x_{4}=0000\right]\right) \vee\left(\left[x_{5} x_{6} \in\{11\}\right] \wedge\left[\left(x_{1} x_{2} x_{3} x_{4}\right)_{2} \in\{1,2,4,5,7,10,11,14\}\right]\right)$.
52. The small- n results are quite different from those that work asymptotically:

$k l(38)$	$n k l(38)$	$n k l(38)$	$n k l$ (38)
$\begin{array}{llll}5 & 2 & 2 & 33\end{array}$	832169	1144791	14554030
$\begin{array}{lllll}6 & 3 & 4 & 59\end{array}$	932273	12431320	15557126
$\begin{array}{lllll}7 & 3 & 3 & 100\end{array}$	1044459	13562337	165412419

(Optimizations like the fact that $\left[x_{1} x_{2} \in\{00,01\}\right]=\bar{x}_{1}$ usually reduce the cost further.)
53. First note that $2^{k} / l \leq n-3 \lg n$, hence $m_{i} \leq n-3 \lg n+1$ and $2^{m_{i}}=O\left(2^{n} / n^{3}\right)$. Also $l=O(n)$ and $t(n-k)=O\left(2^{n} / n^{2}\right)$. So (38) reduces to $l \cdot 2^{n-k}+O\left(2^{n} / n^{2}\right)=$ $2^{n} /(n-3 \lg n)+O\left(2^{n} / n^{2}\right)$.
54. The greedy-footprint heuristic gives a chain of length 15 :

$$
\begin{array}{lll}
x_{5}=x_{1} \oplus x_{2}, & x_{10}=x_{4} \oplus x_{5}, & f_{2}=x_{15}=\bar{x}_{5} \wedge x_{8}, \\
x_{6}=x_{2} \oplus x_{3}, & x_{11}=x_{7} \vee x_{10}, & f_{3}=x_{16}=x_{4} \wedge \bar{x}_{12}, \\
x_{7}=x_{1} \wedge \bar{x}_{3}, & x_{12}=x_{6} \oplus x_{11}, & f_{4}=x_{17}=x_{1} \wedge x_{8}, \\
x_{8}=x_{4} \wedge \bar{x}_{6}, & x_{13}=\bar{x}_{10} \wedge x_{12}, & f_{5}=x_{18}=x_{7} \wedge x_{9}, \\
x_{9}=x_{4} \wedge \bar{x}_{5}, & f_{1}=x_{14}=x_{6} \wedge \bar{x}_{11}, & f_{6}=x_{19}=\bar{x}_{3} \wedge x_{13} .
\end{array}
$$

The minterm-first method corresponds to a chain of length 22 , after we remove steps that are never used:

$$
\begin{aligned}
x_{5}=\bar{x}_{1} \wedge \bar{x}_{2}, & x_{13}=x_{5} \wedge x_{10}, & x_{20}=x_{8} \wedge x_{11}, \\
x_{6}=\bar{x}_{1} \wedge x_{2}, & x_{14}=x_{5} \wedge x_{11}, & f_{6}=x_{21}=x_{15} \vee x_{18}, \\
x_{7}=x_{1} \wedge \bar{x}_{2}, & x_{15}=x_{6} \wedge x_{9}, & f_{1}=x_{22}=x_{13} \vee x_{21}, \\
x_{8}=x_{1} \wedge x_{2}, & x_{16}=x_{6} \wedge x_{11}, & f_{2}=x_{23}=x_{12} \vee x_{20}, \\
x_{9}=\bar{x}_{3} \wedge x_{4}, & x_{17}=x_{7} \wedge x_{9}, & x_{24}=x_{14} \vee x_{16}, \\
x_{10}=x_{3} \wedge \bar{x}_{4}, & x_{18}=x_{7} \wedge x_{11}, & f_{3}=x_{25}=x_{24} \vee x_{19}, \\
x_{11}=x_{3} \wedge x_{4}, & f_{5}=x_{19}=x_{8} \wedge x_{9}, & f_{4}=x_{26}=x_{17} \vee x_{20}, \\
x_{12}=x_{5} \wedge x_{9}, & &
\end{aligned}
$$

(The distributive law could replace the computation of x_{14}, x_{16}, and x_{24} by two steps.)
Incidentally, the three functions in the answer to exercise 51 can be computed in only ten steps:

$$
\begin{array}{lrl}
x_{5}=x_{2} \vee x_{4}, & f_{3}=x_{9}=x_{6} \oplus x_{8}, & x_{12}=x_{2} \oplus x_{3}, \\
x_{6}=\bar{x}_{1} \wedge x_{5}, & x_{10}=x_{1} \oplus x_{8}, & x_{13}=\bar{x}_{10} \wedge x_{12}, \\
x_{7}=x_{2} \wedge x_{4}, & \bar{f}_{2}=x_{11}=x_{9} \vee x_{10}, & f_{1}=x_{14}=x_{4} \oplus x_{13} \\
x_{8}=x_{3} \wedge \bar{x}_{7}, & &
\end{array}
$$

55. The optimum two-level DNF and CNF representations in answer 50 cost 53 and 43, respectively. Formula (37) costs 30 , when optimized as in exercise 54 . The alternative in exercise 51 costs only 17 . But the catalog of optimum five-variable chains suggests

$$
x_{10}=x_{1} \oplus x_{9}
$$

$$
x_{14}=x_{7} \wedge x_{12}
$$

for this six-variable function. Is there a better way?
56. If we care about at most two values, the function can be either constant or x_{j} or \bar{x}_{j}.
57. The truth tables for x_{5} through x_{17}, in hexadecimal notation, are respectively Off0, 2222, 33cc, Od0d, 7777, 5d5d, 3ec1, 6b94, 4914, 4804, 060b, 2020, 7007. So we get
58. The truth tables of all cost-7 functions with exactly eight 1 s in their truth tables are equivalent to either 0779, 169b, or 179a. Combining these in all possible ways yields 9656 solutions that are distinct under permutation and/or complementation of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ as well as under permutation and/or complementation of $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$.

$$
\begin{aligned}
& x_{7}=\bar{x}_{1} \wedge x_{2}, \quad x_{11}=x_{5} \wedge x_{10}, \quad x_{15}=x_{13} \oplus x_{14}, \quad x_{18}=\bar{x}_{4} \wedge x_{17}, \\
& x_{8}=x_{3} \oplus x_{7}, \quad x_{12}=x_{5} \vee x_{10}, \quad x_{16}=x_{5} \wedge \bar{x}_{10}, \quad x_{19}=x_{6} \wedge x_{15} \text {, } \\
& x_{9}=x_{2} \wedge x_{8}, \quad x_{13}=x_{4} \wedge \bar{x}_{11}, \quad x_{17}=\bar{x}_{3} \wedge x_{16}, \quad x_{20}=x_{18} \vee x_{19} \text {, } \\
& x_{20}=x_{18} \vee x_{19},
\end{aligned}
$$

59. The greedy-footprint heuristic produces the following 17-step chain:

\[

\]

The initial functions all have large footprints, so we can't achieve $C\left(f_{1} f_{2} f_{3} f_{4}\right)=28$; but a slightly more difficult S-box probably does exist.
60. One way is $u_{1}=x_{1} \oplus y_{1}, u_{2}=x_{2} \oplus y_{2}, v_{1}=y_{2} \oplus u_{1}, v_{2}=y_{1} \oplus u_{2}, z_{1}=v_{1} \wedge \bar{u}_{2}$, $z_{2}=v_{2} \wedge \bar{u}_{1}$.
61. Viewing these partial functions of six variables as 4×16 truth tables, with rows governed by $x_{1} y_{1}$, our knowledge of 4 -bit functions suggests good ways to compute the rows and leads to the following 25 -step solution: $t_{1}=x_{2} \wedge y_{2}, t_{2}=x_{3} \wedge y_{3}, t_{3}=x_{2} \vee y_{2}$, $t_{4}=x_{3} \vee y_{3}, t_{5}=t_{1} \oplus t_{2}, t_{6}=t_{1} \vee t_{2}, t_{7}=t_{4} \wedge \bar{t}_{5}, t_{8}=t_{3} \oplus t_{6}, t_{9}=x_{2} \oplus y_{2}, t_{10}=t_{4} \oplus t_{9}$, $t_{11}=t_{5} \wedge \bar{t}_{10}, t_{12}=t_{3} \oplus t_{4}, t_{13}=x_{1} \vee y_{1}, t_{14}=t_{8} \oplus t_{12}, t_{15}=t_{13} \wedge \bar{t}_{14}, t_{16}=t_{4} \oplus t_{7}$, $t_{17}=t_{13} \wedge \bar{t}_{16}, t_{18}=t_{3} \vee t_{4}, t_{19}=x_{1} \oplus y_{1}, t_{20}=t_{19} \wedge \bar{t}_{18}, t_{21}=t_{8} \oplus t_{15}, t_{22}=t_{7} \oplus t_{17}$, $z_{1}=t_{11} \vee t_{20}, z_{2}=t_{21} \wedge \bar{t}_{20}, z_{3}=t_{22} \wedge \bar{t}_{20}$. (Is there a better way?)
62. There are $\binom{2^{n}}{2^{n} d} 2^{2^{n} c}$ such functions, at most $\binom{2^{n}}{2^{n} d} t(n, r)$ of which have cost $\leq r$. So we can argue as in exercise 46 to conclude from (32) that the fraction with cost $\leq r=\left\lfloor 2^{n} c / n\right\rfloor$ is at most $2^{2 r+1-2^{n} c}(n+r-1)^{2 r} /(r-1)!=2^{-r \lg n+O(r)}$.
63. [Problemy Kibernetiki 21 (1969), 215-226.] Put the truth table in a $2^{k} \times 2^{n-k}$ array as in Lupanov's method, and suppose there are c_{j} cares in column j, for $0 \leq j<2^{n-k}$. Break that column into $\left\lfloor c_{j} / m\right\rfloor$ subcolumns that each have m cares, plus a possibly empty subcolumn at the bottom that contains fewer than m of them. The hint tells us that at most 2^{m+k} column vectors suffice to match the 0 s and 1 s of every subcolumn that has a specified top row i_{0} and bottom row i_{1}. With $O\left(m 2^{m+3 k}\right)$ operations we can therefore construct $O\left(2^{m+3 k}\right)$ functions $g_{t}\left(x_{1}, \ldots, x_{k}\right)$ from the minterms of $\left\{x_{1}, \ldots, x_{k}\right\}$, so that every subcolumn matches some type t. And for every type t we can construct functions $h_{t}\left(x_{k+1}, \ldots, x_{n}\right)$ from the minterms of $\left\{x_{k+1}, \ldots, x_{n}\right\}$, specifying the columns that match t; the cost is at most $\sum_{j}\left(\left\lfloor c_{j} / m\right\rfloor+1\right) \leq 2^{n} c / m+2^{n-k}$. Finally, $f=\bigvee_{t}\left(g_{t} \wedge h_{t}\right)$ requires $O\left(2^{m+3 k}\right)$ additional steps. Choosing $k=\lfloor 2 \lg n\rfloor$ and $m=\lceil n-9 \lg n\rceil$ makes the total cost at most $\left(2^{n} c / n\right)\left(1+9 n^{-1} \lg n+O\left(n^{-1}\right)\right)$.

Of course we need to prove the hint, which is due to E. I. Nechiporuk [Doklady Akad. Nauk SSSR 163 (1965), 40-42]. In fact, $2^{m}(1+\lceil k \ln 2\rceil)$ vectors suffice (see S. K. Stein, J. Combinatorial Theory A16 (1974), 391-397): If we choose $q=2^{m}\lceil k \ln 2\rceil$ vectors at random, not necessarily distinct, the expected number of untouched subcubes is $\binom{k}{m} 2^{m}\left(1-2^{-m}\right)^{q}<\binom{k}{m} 2^{m} e^{-q^{-m}}<2^{m}$. (An explicit construction would be nicer.)

For extensive generalizations - tolerating a percentage of errors and specifying the density of 1s - see N. Pippenger, Mathematical Systems Theory 10 (1977), 129-167.
 nese magic square. [Berlekamp, Conway, and Guy use this numbering scheme to present a complete analysis of tic-tac-toe in their book Winning Ways 3 (2003), 732-736.]
65. One solution is to replace the "defending" moves d_{j} by "attacking" moves a_{j} and "counterattacking" moves c_{j}, and to include them only for corner cells $j \in\{1,3,9,7\}$.

Let $j \cdot k=(j k) \bmod 10$; then

$$
\begin{array}{lll}
j \cdot 1 & j \cdot 2 & j \cdot 3 \\
j \cdot 4 & j \cdot 5 & j \cdot 6 \\
j \cdot 7 & j \cdot 8 & j \cdot 9
\end{array}
$$

gives us another way to look at the tic-tac-toe diagram, when j is a corner, because $j \perp 10$. The precise definition of a_{j} and c_{j} is then

$$
\begin{aligned}
& a_{j}=m_{j} \wedge\left(\left(x_{j \cdot 3} \wedge \beta_{(j \cdot 8)(j \cdot 9)} \wedge\left(o_{j \cdot 4} \oplus o_{j \cdot 6}\right)\right) \vee\left(x_{j \cdot 7} \wedge \beta_{(j \cdot 6)(j \cdot 9)} \wedge\left(o_{j \cdot 2} \oplus o_{j .8}\right)\right)\right. \\
& c_{j}=d_{j} \wedge \overline{\left(x_{j \cdot 6} \wedge o_{j .7}\right)} \wedge \overline{\left(x_{j \cdot 8} \wedge o_{j \cdot 3}\right)} \wedge \bar{d}_{j \cdot 9}
\end{aligned}
$$

here $d_{j}=m_{j} \wedge \beta_{(j \cdot 2)(j \cdot 3)} \wedge \beta_{(j \cdot 4)(j \cdot 7)}$ takes the place of ${ }_{(51)}$. We also define

$$
\begin{aligned}
& u=\left(x_{1} \oplus x_{3}\right) \oplus\left(x_{7} \oplus x_{9}\right) \\
& v=\left(o_{1} \oplus o_{3}\right) \oplus\left(o_{7} \oplus o_{9}\right) \\
& t=m_{2} \wedge m_{6} \wedge m_{8} \wedge m_{4} \wedge(u \vee \bar{v})
\end{aligned}
$$

$$
z_{j}= \begin{cases}m_{j} \wedge \bar{t}, & \text { if } j=5 \\ m_{j} \wedge \bar{d}_{j \cdot 9}, & \text { if } j \in\{1,3,9,7\} \\ m_{j}, & \text { if } j \in\{2,6,8,4\}\end{cases}
$$

in order to cover a few more exceptional cases. Finally the sequence of rank-ordered moves $d_{5} d_{1} d_{3} d_{9} d_{7} d_{2} d_{6} d_{8} d_{4} m_{5} m_{1} m_{3} m_{9} m_{7} m_{2} m_{6} m_{8} m_{4}$ in (53) is replaced by the sequence $a_{1} a_{3} a_{9} a_{7} c_{1} c_{3} c_{9} c_{7} z_{5} z_{1} z_{3} z_{9} z_{7} z_{2} z_{6} z_{8} z_{4}$; and we replace $\left(d_{j} \wedge \bar{d}_{j}^{\prime}\right) \vee\left(m_{j} \wedge \bar{m}_{j}^{\prime}\right)$ in (55) by $\left(a_{j} \wedge \bar{a}_{j}^{\prime}\right) \vee\left(c_{j} \wedge \bar{c}_{j}^{\prime}\right) \vee\left(z_{j} \wedge \bar{z}_{j}^{\prime}\right)$ when j is a corner cell, otherwise simply by $\left(z_{j} \wedge \bar{z}_{j}^{\prime}\right)$.
(Notice that this machine is required to move correctly from all legal positions, even when those positions couldn't arise after the machine had made X's earlier moves. We essentially allow humans to play the game until they ask the machine for advice. Otherwise great simplifications would be possible. For example, if \times always goes first, it could grab the center cell and eliminate a huge number of future possibilities; fewer than $8 \times 6 \times 4 \times 2=384$ games could arise. Even if O goes first, there are fewer than $9 \times 7 \times 5 \times 3=945$ possible scenarios against a fixed strategy. In fact, the actual number of different games with the strategy defined here turns out to be $76+457$, of which $72+328$ are won by the machine and the rest belong to the cat.)
66. The Boolean chain in the previous answer fulfills its mission of making correct moves from all 4520 legal positions, where correctness was essentially defined to mean that the worst-case final outcome is maximized. But a truly great tic-tac-toe player would do things differently. For example, from position $\frac{0_{0}}{|x|}$ the machine takes the center, $\frac{\frac{00}{|x|}}{x}$, and O probably draws by playing in a corner. But moving to $\frac{x^{\circ}|x|}{x}$ would give O only two chances to avoid defeat. [See Martin Gardner, Hexaflexagons and Other Mathematical Diversions, Chapter 4.]

Furthermore the best move from a position like $\frac{x}{\left.\frac{x}{0 \mid} \right\rvert\,}$ is to $\frac{\frac{x \times x}{\partial \mid}}{\frac{1}{x}}$ instead of winning
 humiliating your opponent so badly.

Finally, even the concept of a single "best move" is flawed, because a good player will choose different moves in different games (as Babbage observed).

$$
\begin{array}{r}
\text { It might be thought that programing a digital computer to play ticktacktoe, } \\
\text { or designing special circuits for a ticktacktoe machine, } \\
\text { would be simple. This is true unless your aim is to construct a master robot } \\
\text { that will win the maximum number of games against inexperienced players. } \\
\text { - MARTIN GARDNER, The Scientific American Book of } \\
\text { Mathematical Puzzles \& Diversions (1959) }
\end{array}
$$

67. The author's best effort, with 1734 gates, was constructed by adapting the method of Sholomov in answer 63: First divide the truth tables into 64 rows for $o_{5} x_{5} O_{2} O_{6} O_{8} O_{4}$ and 4096 columns for the other 12 input variables. Then place appropriate 1 s into "care" positions, in such a way that the columns have relatively few 1s. Then find a small number of column types that match the cares in all columns; 23 types suffice for the c function, 20 types for s, and 6 for m. We can then compute each output as $\bigvee\left(g_{t} \wedge h_{t}\right)$, sharing much of the work of the minterm calculations within g_{t} and h_{t}.
[This exercise was inspired by a discussion in John Wakerly's book Digital Design (Prentice-Hall, 3rd edition, 2000), §6.2.7. Incidentally, Babbage planned to choose among k possible moves by looking at $N \bmod k$, where N was the number of games won so far; he didn't realize that successive moves would tend to be highly correlated until N changed. Much better would have been to let N be the number of moves made so far.]
68. No. That method yields a "uniform" chain with a comprehensible structure, but its cost is 2^{n} times a polynomial in n. A circuit with approximately $2^{n} / n$ gates, constructed by Theorem L, exists but is more difficult to fabricate. (Incidentally, $C\left(\pi_{5}\right)=10$.)
69. (a) One can, for example, verify this result by trying all 64 cases.
(b) If x_{m} lies in the same row or column as x_{i}, and also in the same row or column as x_{j}, we have $\alpha_{111}=\alpha_{101}=\alpha_{110}=0$, so the pairs are good. Otherwise there are essentially three different possibilities, all bad: If $(i, j, m)=(1,2,4)$ then $\alpha_{101}=0$, $\alpha_{100}=x_{5} x_{9} \oplus x_{6} x_{8}, \alpha_{011}=x_{9}$; if $(i, j, m)=(1,2,6)$ then $\alpha_{010}=x_{4} x_{9}, \alpha_{011}=x_{7}$, $\alpha_{100}=x_{5} x_{9}, \alpha_{101}=x_{8}$; if $(i, j, m)=(1,5,9)$ then $\alpha_{111}=1, \alpha_{110}=0, \alpha_{010}=x_{3} x_{7}$.
70. (a) $x_{1} \wedge\left(\left(x_{5} \wedge x_{9}\right) \oplus\left(x_{6} \wedge x_{8}\right)\right) \oplus x_{2} \wedge\left(\left(x_{6} \wedge x_{7}\right) \oplus\left(x_{4} \wedge x_{9}\right)\right) \oplus x_{3} \wedge\left(\left(x_{4} \wedge x_{8}\right) \oplus\left(x_{5} \wedge x_{7}\right)\right)$.
(b) $x_{1} \wedge\left(\left(x_{5} \wedge x_{9}\right) \vee\left(x_{6} \wedge x_{8}\right)\right) \vee x_{2} \wedge\left(\left(x_{6} \wedge x_{7}\right) \vee\left(x_{4} \wedge x_{9}\right)\right) \vee x_{3} \wedge\left(\left(x_{4} \wedge x_{8}\right) \vee\left(x_{5} \wedge x_{7}\right)\right)$.
(c) Let $y_{1}=x_{1} \wedge x_{5} \wedge x_{9}, y_{2}=x_{1} \wedge x_{6} \wedge x_{8}, y_{3}=x_{2} \wedge x_{6} \wedge x_{7}, y_{4}=x_{2} \wedge x_{4} \wedge x_{9}, y_{5}=$ $x_{3} \wedge x_{4} \wedge x_{8}, y_{6}=x_{3} \wedge x_{5} \wedge x_{7}$. The function $f\left(y_{1}, \ldots, y_{6}\right)=\left[y_{1}+y_{2}+y_{3}>y_{4}+y_{5}+y_{6}\right]$ can be evaluated in 15 further steps with two full adders and a comparator; but there is a 14-step solution: Let $z_{1}=\left(y_{1} \oplus y_{2}\right) \oplus y_{3}, z_{2}=\left(y_{1} \oplus y_{2}\right) \vee\left(y_{1} \oplus y_{3}\right), z_{3}=\left(y_{4} \oplus y_{5}\right) \oplus y_{6}$, $z_{4}=\left(y_{4} \oplus y_{5}\right) \vee\left(y_{4} \oplus y_{6}\right)$. Then $f=\left(z_{1} \oplus\left(z_{2} \wedge\left(\bar{z}_{4} \oplus\left(z_{1} \vee z_{3}\right)\right)\right)\right) \wedge\left(\bar{z}_{3} \vee z_{4}\right)$. Furthermore $y_{1} y_{2} y_{3}=111 \Longleftrightarrow y_{4} y_{5} y_{6}=111$; so there are don't-cares, leading to an 11-step solution: $f=\left(\left(\bar{z}_{1} \wedge z_{3}\right) \vee \bar{z}_{4}\right) \wedge z_{2}$. The total cost is $12+11=23$.
(The author knows of no way by which a computer could discover such an efficient chain in a reasonable amount of time, given only the truth table of f. But perhaps an even better chain exists.)
71. (a) $P(p)=1-12 p^{2}+24 p^{3}+12 p^{4}-96 p^{5}+144 p^{6}-96 p^{7}+24 p^{8}$, which is $\frac{11}{32}+$ $\frac{9}{2} \epsilon^{2}-3 \epsilon^{4}-24 \epsilon^{6}+24 \epsilon^{8}$ when $p=\frac{1}{2}+\epsilon$.
(b) There are $N=2^{n-3}$ sets of eight values $\left(f_{0}, \ldots, f_{7}\right)$, each of which yields good pairs with probability $P(p)$. So the answer is $1-P(p)^{N}$.
(c) The probability is $\binom{N}{r} P(p)^{r}(1-P(p))^{N-r}$ that exactly r sets succeed; and in such a case t trials will find good pairs with probability $(r / N)^{t}$. The answer is therefore $1-\sum_{r=0}^{N}\binom{N}{r} P(p)^{r}(1-P(p))^{N-r}(r / N)^{t}=1-P(p)^{t}+O\left(t^{2} / N\right)$.
(d) $\sum_{r=0}^{N}\binom{N}{r} P(p)^{r}(1-P(p))^{N-r} \sum_{j=0}^{t-1}(r / N)^{j}=\left(1-P(p)^{t}\right) /(1-P(p))+O\left(t^{3} / N\right)$.
72. The probability in exercise 71 (a) becomes $P(p)+\left(72 p^{3}-264 p^{4}+432 p^{5}-336 p^{6}+\right.$ $\left.96 p^{7}\right) r+\left(60 p^{2}-240 p^{3}+456 p^{4}-432 p^{5}+144 p^{6}\right) r^{2}+\left(-48 p^{2}+144 p^{3}-216 p^{4}+96 p^{5}\right) r^{3}+$ $\left(-36 p^{2}+24 p^{3}+12 p^{4}\right) r^{4}+\left(48 p^{2}-24 p^{3}\right) r^{5}-12 p^{2} r^{6}$. If $p=q=(1-r) / 2$, this is $\left(11+48 r+36 r^{2}-144 r^{3}-30 r^{4}+336 r^{5}-348 r^{6}+144 r^{7}-21 r^{8}\right) / 32$; for example, it's $7739 / 8192 \approx 0.94$ when $r=1 / 2$.
73. Consider the Horn clauses $1 \wedge 2 \Rightarrow 3,1 \wedge 3 \Rightarrow 4, \ldots, 1 \wedge(n-1) \Rightarrow n, 1 \wedge n \Rightarrow 2$, and $i \wedge j \Rightarrow 1$ for $1<i<j \leq n$. Suppose $|Z|>1$ in a decomposition, and let i be minimum such that $x_{i} \in Z$. Also let j be minimum such that $j>i$ and $x_{j} \in Z$. We cannot have $i>1$, since $i \wedge j \Rightarrow 1$ in that case. Thus $i=1$, and $x_{j} \in Z$ for $2 \leq j \leq n$.
74. Suppose we know that no nontrivial decomposition exists with $x_{1} \in Z$ or \cdots or $x_{i-1} \in Z$; initially $i=1$. We hope to rule out $x_{i} \in Z$ too, by choosing j and m cleverly. The Horn clauses $i \wedge j \Rightarrow m$ reduce to Krom clauses $j \Rightarrow m$ when i is asserted. So we essentially want to use Tarjan's depth-first search for strong components, in a digraph with arcs $j \Rightarrow m$ that may or may not exist.

When exploring from vertex j, first try $m=1, \ldots, m=i-1$; if any such implication $i \wedge j \Rightarrow m$ succeeds, we can eliminate j and all its predecessors from the digraph for i. Otherwise, test if $j \Rightarrow m$ for any such eliminated vertex m. Otherwise test unexplored vertices m. Otherwise try vertices m that have already been seen, favoring those near the root of the depth-first tree.

In the example $f(x)=(\operatorname{det} X) \bmod 2$, we would successively find $1 \wedge 2 \nRightarrow 3,1 \wedge 2 \Rightarrow 4$, $1 \wedge 4 \Rightarrow 3,1 \wedge 3 \Rightarrow 5,1 \wedge 5 \Rightarrow 6,1 \wedge 6 \Rightarrow 7,1 \wedge 7 \Rightarrow 8,1 \wedge 8 \Rightarrow 9,1 \wedge 9 \Rightarrow 2($ now $i \leftarrow 2) ; 2 \wedge 3 \nRightarrow 1$, $2 \wedge 3 \Rightarrow 4,2 \wedge 4 \nRightarrow 1,2 \wedge 4 \nRightarrow 5,2 \wedge 4 \Rightarrow 6,2 \wedge 6 \Rightarrow 1$ (now 3,4 , and 6 are eliminated from the digraph for 2), $2 \wedge 5 \Rightarrow 1$ (and 5 is eliminated), $2 \wedge 7 \nRightarrow 1,2 \wedge 7 \Rightarrow 3$ (7 is eliminated), $2 \wedge 8 \Rightarrow 1,2 \wedge 9 \Rightarrow 1$ (now $i \leftarrow 3$); $3 \wedge 4 \nRightarrow 1,3 \wedge 4 \Rightarrow 2,3 \wedge 5 \Rightarrow 1$, etc.
75. This function is 1 at only two points, which are complementary. So it is indecomposable; yet the pairs (58) are never bad when $n>3$. Every partition (Y, Z) will therefore be a candidate for decomposition.

Similarly, if f is decomposable with respect to (Y, Z), the indecomposable function $f(x) \oplus S_{0 n}(x)$ will act essentially like f in the tests. (A method to deal with approximately decomposable functions should probably be provided in a general-purpose decomposability tester.)
76. (a) Let $a_{l}=[i \geq l]$ for $0 \leq l \leq 2^{m}$. The cost is $\leq 2 t(m)$, as observed in answer $38(\mathrm{~b})$; and in fact, the cost can be reduced to $2^{m+1}-2 m-2$ with $\Theta(m)$ depth. Furthermore the function $[i \leq j]=\left(\bar{\imath}_{1} \wedge j_{1}\right) \vee\left(\left(i_{1} \equiv j_{1}\right) \wedge\left[i_{2} \ldots i_{m} \leq j_{2} \ldots j_{m}\right]\right)$ can be evaluated with $4 m-3$ gates. After computing $x \oplus y$, each z_{l} costs $2^{m+1}+1=O(n / \log n)$.
(b) Here the cost is at most $C\left(g_{0}\right)+\cdots+C\left(g_{2^{m}}\right) \leq\left(2^{m}+1\right)\left(2^{2^{m}} /\left(2^{m}+O(m)\right)\right)$ by Theorem L, because each g_{l} is a function of 2^{m} inputs.
(c) If $i \leq j$ we have $z_{l}=x$ for $l \leq i$ and $z_{l}=y$ for $l>i$; hence $f_{i}(x)=c_{0} \oplus \cdots \oplus c_{i}$ and $f_{j}(y)=c_{j+1} \oplus \cdots \oplus c_{2^{m}}$. If $i>j$ we have $z_{l}=y$ for $l \leq i$ and $z_{l}=x$ for $l>i$; hence $f_{j}(y)=c_{0} \oplus \cdots \oplus c_{j}$ and $f_{i}(x)=c_{i+1} \oplus \cdots \oplus c_{2^{m}}$.
(d) The functions $b_{l}=[j<l]$ can be computed for $0 \leq l \leq 2^{m}$ in $O\left(2^{m}\right)$ steps, as in (a). So we can compute F from $\left(c_{0}, \ldots, c_{2^{m}}\right)$ with $O\left(2^{m}\right)$ further gates. Step (b) therefore dominates the cost, for large m.
(e) $a_{0}=1, a_{1}=i, a_{2}=0 ; b_{0}=0, b_{1}=j, b_{2}=1 ; d=[i \leq j]=\bar{\imath} \vee j ; m_{l}=a_{l} \oplus d$, $z_{l 0}=x_{0} \oplus\left(m_{l} \wedge\left(x_{0} \oplus y_{0}\right)\right), z_{l 1}=x_{1} \oplus\left(m_{l} \wedge\left(x_{1} \oplus y_{1}\right)\right)$, for $l=0,1,2 ; c_{0}=z_{01}$; $c_{1}=z_{10} \wedge \bar{z}_{11} ; c_{2}=z_{20} \vee z_{21} ; c_{l}^{\prime}=c_{l} \wedge\left(d \equiv a_{l}\right), c_{l}^{\prime \prime}=c_{l} \wedge\left(d \equiv b_{l}\right)$, for $l=0,1,2$; and finally $F=\left(c_{0}^{\prime} \oplus c_{1}^{\prime} \oplus c_{2}^{\prime}\right) \vee\left(c_{0}^{\prime \prime} \oplus c_{1}^{\prime \prime} \oplus c_{2}^{\prime \prime}\right)$.

The net cost (29 after obvious simplifications) is, of course, outrageous in such a small example. But one wonders if a state-of-the-art automatic optimizer would be able to reduce this chain to just 5 gates.
[This result is a special case of more general theorems in Matematicheskie Zametki 15 (1974), 937-944; London Math. Soc. Lecture Note Series 169 (1992), 165-173.]
77. Given a shortest such chain for f_{n} or \bar{f}_{n}, let $U_{l}=\{i \mid l=j(i)$ or $l=k(i)\}$ be the "uses" of x_{l}, and let $u_{l}=\left|U_{l}\right|$. Let $t_{i}=1$ if $x_{i}=x_{j(i)} \vee x_{k(i)}$, otherwise $t_{i}=0$. We will show that there's a chain of length $\leq r-4$ that computes either f_{n-1} or \bar{f}_{n-1}, by using the following idea: If variable x_{m} is set to 0 or 1 , for any m, we can obtain a chain for f_{n-1} or \bar{f}_{n-1} by deleting all steps of U_{m} and modifying other steps appropriately. Furthermore, if $x_{i}=x_{j(i)} \circ x_{k(i)}$ and if either $x_{j(i)}$ or $x_{k(i)}$ is known to equal t_{i} when x_{m} has been set to 0 or 1 , then we can also delete the steps U_{i}. (Throughout this argument, the letter m will stand for an index in the range $1 \leq m \leq n$.)

Case $1, u_{m}=1$ for some m. This case cannot occur in a shortest chain. For if the only use of x_{m} is $x_{i}=\bar{x}_{m}$, eliminating this step would change $f_{n} \leftrightarrow \bar{f}_{n}$; and otherwise we could set the values of $x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots, x_{n}$ to make x_{i} independent of x_{m}, contradicting $x_{n+r}=f_{n}$ or \bar{f}_{n}. Thus every variable must be used at least twice.

Case $2, x_{l}=\bar{x}_{m}$ for some l and m, where $u_{m}>1$. Then $x_{i}=x_{l} \circ x_{k}$ for some i and k, and we can set $x_{m} \leftarrow \bar{t}_{i}$ to make x_{i} independent of x_{k}. Eliminating steps U_{m}, U_{l}, and U_{i} then removes at least 4 steps, except when $u_{l}=u_{i}=1$ and $u_{m}=2$ and $x_{j}=x_{m} \circ x_{i}$; but in that case we can also eliminate U_{j}.

Case $3, u_{m} \geq 3$ for some m, and not Case 2. If $i, j, k \in U_{m}$ and $i<j<k$, set $x_{m} \leftarrow t_{k}$ and remove steps i, j, k, U_{k}.

Case 4, $u_{1}=u=2=\cdots=u_{n}=2$, and not Case 2. We may assume that the first step is $x_{1}=x_{1} \circ x_{2}$, and that $x_{l}=x_{1} \circ x_{k}$ for some $k<l$.

Case 4.1, $k>0$. Then $k>1$. If $u_{k}=1$, set $x_{1} \leftarrow t_{l}$ and remove steps $1, k, l, U_{l}$. Otherwise set $x_{2} \leftarrow t_{1}$; this forces $x_{k}=\bar{t}_{l}$, and we can remove steps $1, k, l, U_{k}$.

Case 4.2, $x_{l}=x_{1} \circ x_{m}$. Then we must have $m=2$; for if $m>2$ we could set $x_{2} \leftarrow t_{1}, x_{m} \leftarrow t_{l}$, and make x_{r} independent of x_{1}. Hence we may assume that $x_{1}=x_{1} \wedge x_{2}, x_{2}=x_{1} \vee x_{2}$. Setting $x_{1} \leftarrow 0$ allows us to remove U_{0} and U_{1}; setting $x_{1} \leftarrow 1$ allows us to remove U_{0} and U_{2}. Thus we're done unless $u_{1}=u_{2}=1$.

If $x_{p}=\bar{x}_{1}$, set $x_{1} \leftarrow 0$ and remove $1,2, p, U_{p}$; if $x_{q}=\bar{x}_{2}$, set $x_{1} \leftarrow 1$ and remove 1 , $2, q, U_{q}$. Otherwise $x_{p}=x_{1} \circ x_{u}$ and $x_{q}=x_{2} \circ x_{v}$, where x_{u} and x_{v} do not depend on x_{1} or x_{2}. But that's impossible; it would allow us to set x_{3}, \ldots, x_{n} to make $x_{u}=t_{p}$, then $x_{2} \leftarrow 1$ to make x_{r} independent of x_{1}.
[Problemy Kibernetiki 23 (1970), 83-101; 28 (1974), 4. With similar proofs, Red'kin showed that the shortest AND-OR-NOT chains for the functions ' $x_{1} \ldots x_{n}<$ $y_{1} \ldots y_{n}^{\prime}$ ' and ' $x_{1} \ldots x_{n}=y_{1} \ldots y_{n}$ ' have lengths $5 n-3$ and $5 n-1$, respectively.]
78. [SICOMP 6 (1977), 427-430.] Say that y_{k} is active if $k \in S$. We may assume that the chain is normal and that $\|S\|>1$; the proof is like Red'kin's in answer 77:

Case 1 , some active y_{k} is used more than once. Setting $y_{k} \leftarrow 0$ saves at least two steps and yields a chain for a function with $\|S\|-1$ active values.

Case 2 , some active y_{k} appears only in an AND gate. Setting $y_{k} \leftarrow 0$ eliminates at least two steps, unless this AND is the final step. But it can't be the final step, because $y_{k}=0$ makes the result independent of every other active y_{j}.

Case 3, like Case 2 but with an OR or NOT-BUT or BUT-NOT gate. Setting $y_{k} \leftarrow c$ for some appropriate constant c has the desired effect.

Case 4, like Case 2 but with XOR. The gate can't be final, since the result should be independent of y_{k} when $\left(x_{1} \ldots x_{m}\right)_{2}$ addresses a different active value y_{j}. So we can eliminate two steps by setting y_{k} to the function defined by the other input to XOR.
79. (a) Suppose the cost is $r<2 n-2$; then $n>1$. If each variable is used exactly once, two leaves must be mates. Therefore some variable is used at least twice. Pruning it away produces a chain of cost $\leq r-2$ on $n-1$ variables, having no mates.
(Incidentally, the cost is at least $2 n-1$ if every variable is used at least twice, because at least $2 n$ uses of variables must be connected together in the chain.)
(b) Notice that $S_{0 n}=\bigwedge_{u-v}(u \equiv v)$ whenever the edges $u-v$ form a free tree on $\left\{x_{1}, \ldots, x_{n}\right\}$. So there are many ways to achieve cost $2 n-3$.

Any chain of cost $r<2 n-3$ must have $n>2$ and must contain mates u and v. By renaming and possibly complementing intermediate results, we can assume that $u=1$, $v=2$, and that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1} \circ h\left(x_{3}, \ldots, x_{n}\right), x_{2}, \ldots, x_{n}\right)$, where \circ is \wedge or \oplus.

Case 1, o is AND. We must have $h(0, \ldots, 0)=h(1, \ldots, 1)=1$, for otherwise $f\left(x_{1}, x_{2}, y, \ldots, y\right)$ wouldn't depend on x_{1}. Therefore $f\left(x_{1}, \ldots, x_{n}\right)=h\left(x_{3}, \ldots, x_{n}\right) \wedge$ $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be computed by a chain of the same cost in which 1 and 2 are mates and in which the path between them has gotten shorter.

Case 2, \circ is XOR. Then $f=f_{0} \vee f_{1}$, where $f_{0}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \equiv h\left(x_{3}, \ldots, x_{n}\right)\right) \wedge$ $g\left(0, x_{2}, \ldots, x_{n}\right)$ and $f_{1}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \oplus h\left(x_{3}, \ldots, x_{n}\right)\right) \wedge g\left(1, x_{2}, \ldots, x_{n}\right)$. But $f=$ $S_{0 n}$ has only two prime implicants; so there are only four possibilities:

Case $2 \mathrm{a}, f_{0}=f$. Then we can replace $x_{1} \oplus h$ by 0 , to get a chain of cost $\leq r-2$ for the function $g\left(0, x_{2}, \ldots, x_{n}\right)=S_{0(n-1)}\left(x_{2}, \ldots, x_{n}\right)$.

Case $2 \mathrm{~b}, f_{1}=f$, is similar to Case 2 a .
Case 2c, $f_{0}(x)=x_{1} \wedge \cdots \wedge x_{n}$ and $f_{1}(x)=\bar{x}_{1} \wedge \cdots \wedge \bar{x}_{n}$. In this case we must have $g\left(0, x_{2}, \ldots, x_{n}\right)=x_{2} \wedge \cdots \wedge x_{n}$ and $g\left(1, x_{2}, \ldots, x_{n}\right)=\bar{x}_{2} \wedge \cdots \wedge \bar{x}_{n}$. Replacing h by 1 therefore yields a chain that computes f in $<r$ steps.

Case 2d, $f_{0}(x)=\bar{x}_{1} \wedge \cdots \wedge \bar{x}_{n}$ and $f_{1}(x)=x_{1} \wedge \cdots \wedge x_{n}$, is similar to Case 2c.
Applying these reductions repeatedly will lead to a contradiction. Similarly, one can show that $C\left(S_{0} S_{n}\right)=2 n-2$. [Theoretical Computer Science 1 (1976), 289-295.]
80. [Mathematical Systems Theory 10 (1977), 323-336.] Without loss of generality, $a_{0}=0$ and the chain is normal. Define U_{l} and u_{l} as in answer 77 . We may assume by symmetry that $u_{1}=\max \left(u_{1}, \ldots, u_{n}\right)$.

We must have $u_{1} \geq 2$. For if $u_{1}=1$, we could assume further that $x_{n+1}=x_{1} \circ x_{2}$; hence two of the three functions $S_{\alpha}\left(0,0, x_{3}, \ldots, x_{n}\right)=S_{\alpha^{\prime \prime}}, S_{\alpha}\left(0,1, x_{3}, \ldots, x_{n}\right)=S_{\prime^{\prime}}$, $S_{\alpha}\left(1,1, x_{3}, \ldots, x_{n}\right)=S_{\prime_{\alpha}}$ would be equal. But then S_{α} would be a parity function, or $S_{\alpha^{\prime}}$ would be constant.

Therefore setting $x_{1}=0$ allows us to eliminate the gates of U_{1}, giving a chain for $S_{\alpha^{\prime}}$ with at least 2 fewer gates. It follows that $C\left(S_{\alpha}\right) \geq C\left(S_{\alpha^{\prime}}\right)+2$. Similarly, setting $x_{1}=1$ proves that $C\left(S_{\alpha}\right) \geq C\left(S_{\prime}\right)+2$.

Three cases arise when we explore the situation further:
Case $1, u_{1} \geq 3$. Setting $x_{1}=0$ proves that $C\left(S_{\alpha}\right) \geq C\left(S_{\alpha^{\prime}}\right)+3$.
Case $2, U_{1}=\{i, j\}$ and operator \circ_{j} is canalizing (namely, AND, BUT-NOT, NOTBUT, or OR). Setting x_{1} to an appropriate constant forces the value of x_{j} and allows us to eliminate $U_{1} \cup U_{j}$; notice that $i \notin U_{j}$ in an optimum chain. So either $C\left(S_{\alpha}\right) \geq$ $C\left(S_{\alpha^{\prime}}\right)+3$ or $C\left(S_{\alpha}\right) \geq C\left(S^{\prime} \alpha\right)+3$.

Case $3, U_{1}=\{i, j\}$ and $\circ_{i}=o_{j}=\oplus$. We may assume that $x_{i}=x_{1} \oplus x_{2}$ and $x_{j}=x_{1} \oplus x_{k}$. If $u_{j}=1$ and $x_{l}=x_{j} \oplus x_{p}$, we can restructure the chain by letting $x_{j}=x_{k} \oplus x_{p}, x_{l}=x_{1} \oplus x_{j}$; therefore we can assume that either $u_{j} \neq 1$ or $x_{l}=x_{j} \circ x_{p}$ for some canalizing operator 0 . If $U_{2}=\left\{i, j^{\prime}\right\}$, we can assume similarly that $x_{j^{\prime}}=x_{2} \oplus x_{k^{\prime}}$ and that either $u_{j^{\prime}}=1$ or $x_{l^{\prime}}=x_{j^{\prime}}{o^{\prime}}^{\prime} x_{p^{\prime}}$ for some canalizing operator o^{\prime}. Furthermore we can assume by symmetry that x_{j} does not depend on $x_{j^{\prime}}$.

If x_{k} does not depend on x_{i}, let $f\left(x_{3}, \ldots, x_{n}\right)=x_{k}$; otherwise let $f\left(x_{3}, \ldots, x_{n}\right)$ be the value of x_{k} when $x_{i}=1$. By setting $x_{1}=f\left(x_{3}, \ldots, x_{n}\right)$ and $x_{2}=\bar{f}\left(x_{3}, \ldots, x_{n}\right)$, or vice versa, we make x_{i} and x_{j} constant, and we obtain a chain for the nonconstant
function $S^{\prime} \alpha^{\prime}$. We can, in fact, ensure that x_{l} is constant in the case $u_{j}=1$. We claim that at least five gates of this chain (including x_{i} and x_{j}) can be eliminated; hence $C\left(S_{\alpha}\right) \geq C\left(S^{\prime} \alpha^{\prime}\right)+5$. The claim is clearly true if $\left|U_{i} \cup U_{j}\right| \geq 3$.

We must have $\left|U_{i} \cup U_{j}\right|>1$. Otherwise we'd have $p=i$, and x_{k} would not depend on x_{i}, so S_{α} would be independent of x_{1} with our choice of x_{2}. Therefore $\left|U_{i} \cup U_{j}\right|=2$.

Case 3a, $U_{j}=\{l\}$. Then x_{l} is constant; we can eliminate x_{i}, x_{j}, and $U_{i} \cup U_{j} \cup U_{l}$. If the latter set contains only two elements, then $x_{q}=x_{i} \circ x_{l}$ is also constant and we eliminate U_{q}. Since $S^{\prime} \alpha^{\prime}$ isn't constant, we won't eliminate the output gate.

Case 3b, $U_{i} \subseteq U_{j},\left|U_{j}\right|=2$. Then $x_{q}=x_{i} \circ x_{j}$ for some q; we can eliminate x_{i}, x_{j}, and $U_{j} \cup U_{q}$. The claim has been proved.
(b) By induction, $C\left(S_{k}\right) \geq 2 n+\min (k, n-k)-3-[n=2 k]$, for $0<k<n$; $C\left(S_{>k}\right) \geq 2 n+\min (k, n+1-k)-4$, for $1<k<n$. The easy cases are $C\left(S_{0}\right)=$ $C\left(S_{n}\right)=C\left(S_{\geq 1}\right)=C\left(S_{\geq n}\right)=n-1 ; C\left(S_{\geq 0}\right)=0$. (According to Figs. 4 and 5, these bounds are optimum for $k=\lceil n / 2\rceil$ when $n \leq 5$. All known results are consistent with the conjecture that $C\left(S_{k}\right)=C\left(S_{\geq k}\right)$ for $k \geq n / 2$.)
81. If some variable is used more than once, we can set it to a constant, decreasing n by 1 and decreasing c by ≥ 2. Otherwise the first operation must involve x_{1}, because $y_{1}=x_{1}$ is the only output that doesn't need computation; making x_{1} constant decreases n by $1, c$ by ≥ 1, and d by ≥ 1. [J. Algorithms 7 (1986), 185-201.]
82. (62) is false.
(63) reads, "For all numbers m there's a number n such that $m<n+1$ "; it is true because we can take $m=n$.
(64) fails when $n=0$ or $n=1$, because the numbers in these formulas are required to be nonnegative integers.
(65) says that, if b exceeds a by 2 or more, there's a number $a b$ between them. Of course it's true, because we can let $a b=a+1$.
(66) was explained in the text, and it too is true. Notice that ' \wedge ' takes precedence over ' V ' and ' \equiv ' takes precedence over ' \Leftrightarrow ', just as ' + ' takes precedence over ' \geq ' and ' $<$ ' over ' \wedge ' in $\left(6_{5}\right)$; these conventions reduce the need for parentheses in sentences of L.
(67) says that, if A contains at least one element n, it must contain a minimum element m (an element that's less than or equal to all of its elements). True.
(68) is similar, but m is now a maximum element. Again true, because all sets are assumed to be finite.
(69) asks for a set P with the property that $[0 \in P]=[3 \notin P],[1 \in P]=[4 \notin P]$, $\ldots,[999 \in P]=[1002 \notin P],[1000 \in P] \neq[1003 \notin P],[1001 \in P] \neq[1004 \notin P]$, etc. It's true if (and only if) $P=\{x \mid x \bmod 6 \in\{1,2,3\}$ and $0 \leq x<1000\}$.

Finally, the subformula $\forall n(n \in C \Leftrightarrow n+1 \notin C)$ in (7o) is another way of saying that $C=\emptyset$. Hence the parenthesized formula after $\forall A \forall B$ is a tricky way to say that $A=\emptyset$ and $B \neq \emptyset$. (Stockmeyer and Meyer used this trick to abbreviate statements in L that involve long subformulas more than once.) Statement (7 o) is true because an empty set doesn't equal a nonempty set.
83. We can assume that the chain is normal. Let the canalizing steps be y_{1}, \ldots, y_{p}. Then $y_{k}=\alpha_{k} \circ \beta_{k}$ and $f=\alpha_{p+1}$, where α_{k} and β_{k} are \oplus 's of some subsets of $\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k-1}\right\}$; at most $n+k-2 \oplus$'s are needed to compute them, combining common terms first. Hence $C(f) \leq p+\sum_{k=1}^{p+1}(n+k-2)=(p+1)(n+p / 2)-1$.
84. Argue as in the previous answer, with \vee or \wedge in place of \oplus. [N. Alon and R. B. Boppana, Combinatorica 7 (1987), 15-16.]
85. (a) A simple computer program shows that 13744 are legitimate and 19024 aren't. (An illegitimate family of this kind has at least 8 members; one such is $\{00,0 f, 33,55$, $\mathrm{ff}, 15,3 \mathrm{f}, 77\}$. Indeed, if the functions $x_{1} \vee x_{2}(3 f), x_{2} \vee x_{3}$ (77), and $x_{1} \wedge\left(x_{2} \vee x_{3}\right)$ (15) are present in a legitimate family L, then $x_{2} \sqcup 15=33 \mid 15=37$ must also be in L.)
(b) The projection and constant functions are obviously present. Define $A^{*}=$ $\bigcap\{B \mid B \supseteq A$ and $B \in \mathcal{A}\}$, or $A^{*}=\infty$ if no such set B exists. Then we have $\lceil A\rceil \sqcap\lceil B\rceil=\lceil A \cap B\rceil$ and $\lceil A\rceil \sqcup\lceil B\rceil=\left\lceil(A \cup B)^{*}\right\rceil$.
(c) Abbreviate the formulas as $\hat{x}_{l} \subseteq x_{l} \vee \bigvee_{i=n+1}^{l} \delta_{i}, x_{l} \subseteq \hat{x}_{l} \vee \bigvee_{i=n+1}^{l} \epsilon_{i}$, and argue by induction: If step l is an AND step, $\hat{x}_{l}=\hat{x}_{j} \sqcap \hat{x}_{k} \subseteq \hat{x}_{j} \wedge \hat{x}_{k} \subseteq\left(x_{j} \vee \bigvee_{i=n+1}^{l} \delta_{i}\right) \wedge$ $\left(x_{k} \vee \bigvee_{i=n+1}^{l} \delta_{i}\right)=x_{l} \vee \bigvee_{i=n+1}^{l} \delta_{i} ; x_{l}=x_{j} \wedge x_{k} \subseteq\left(\hat{x}_{j} \vee \bigvee_{i=n+1}^{l-1} \epsilon_{i}\right) \wedge\left(\hat{x}_{k} \vee \bigvee_{i=n+1}^{l-1} \epsilon_{i}\right)=$ $\left(\hat{x}_{j} \wedge \hat{x}_{k}\right) \vee \bigvee_{i=n+1}^{l-1} \epsilon_{i}$, and $\hat{x}_{j} \wedge \hat{x}_{k}=\hat{x}_{l} \vee \epsilon_{l}$. Argue similarly if step l is an OR step.
86. (a) If S is an r-family contained in the $(r+1)$-family S^{\prime}, clearly $\Delta(S) \subseteq \Delta\left(S^{\prime}\right)$.
(b) By the pigeonhole principle, $\Delta(S)$ contains elements u and v of each part, whenever S is an r-family. And if $\Delta(S)=\{u, v\}$, we certainly have $u-v$.
(c) The result is obvious when $r=1$. There are at most $r-1$ edges containing any given vertex u, by the "strong" property. And if $u-v$, the edges disjoint from $\{u, v\}$ are strongly $(r-1)$-closed; so there are at most $(r-2)^{2}$ of them, by induction. Thus there are at most $1+2(r-2)+(r-2)^{2}$ edges altogether.
(d) Yes, by exercise 85(b), if $r>1$, because strongly r-closed graphs are closed under intersection. All graphs with ≤ 1 edges are strongly r-closed when $r>1$, because they have no r-families containing distinct edges.
(e) There are $\binom{n}{3}$ triangles $x_{i j} \wedge x_{i k} \wedge x_{j k}$, only $n-2$ of which are contained in any term $x_{u v}$ of \hat{f}. Hence the minterms for at most $(r-1)^{2}(n-2)$ triangles are contained in \hat{f}, and the others must be contained in one of the functions $\epsilon_{i}=\hat{x}_{i} \oplus\left(\hat{x}_{j(i)} \wedge x_{k(i)}\right)$. Such a term has the form $T=(\lceil G\rceil \sqcap\lceil H\rceil) \oplus(\lceil G\rceil \wedge\lceil H\rceil)=(\lceil G\rceil \wedge\lceil H\rceil) \wedge \overline{\lceil G \cap H\rceil}$, where G and H are strongly r-closed; we will prove that T contains at most $2(r-1)^{3}$ triangles.

A triangle $x_{i j} \wedge x_{i k} \wedge x_{j k}$ in T must involve some variable (say $x_{i j}$) of $\lceil G\rceil$ and some variable (say $x_{i k}$) of $\lceil H\rceil$, but no variable of $\lceil G \cap H\rceil$. There are at most $(r-1)^{2}$ choices for $i j$; and then there are at most $2(r-1)$ choices for k, since H has at most $r-1$ edges touching i and at most $r-1$ edges touching j.
(f) There are 2^{n-1} complete bigraphs obtained by coloring 1 red, coloring other vertices either red or blue, and letting $u-v$ if and only if u and v have opposite colors. By the first formula in exercise $85(\mathrm{c})$, the minterms B for every such graph must be contained in one of the terms $T=\delta_{i}=\hat{x}_{i} \oplus\left(\hat{x}_{j(i)} \vee x_{k(i)}\right)=\left\lceil(G \cup H)^{*}\right\rceil \wedge \overline{\lceil G \cup H\rceil}$. (For example, if $n=4$ and vertices $(2,3,4)$ are (red, blue, blue), then $B=\bar{x}_{12} \wedge x_{13} \wedge$ $x_{14} \wedge x_{23} \wedge x_{24} \wedge \bar{x}_{34}$.) A minterm B is contained in T if and only if, in the coloring for B, some edge of $(G \cup H)^{*}$ has vertices of opposite colors, but all edges of $G \cup H$ are monochromatic. We will prove that T includes at most $2^{n-r} r^{2}$ such B.

Let G be any graph, and $T=\left\lceil G^{*}\right\rceil \wedge \overline{\lceil G\rceil}$. The following (inefficient) algorithm can be used to find G^{*} : If there's an r-family S with $|\Delta(S)|<2$, stop with $G^{*}=\infty$. Otherwise, if $\Delta(S)=\{u, v\}$ and $u+v$, add the edge $u-v$ to G and repeat.

At most 2^{n-r} bipartite minterms B have monochromatic $\left\{u_{j}, v_{j}\right\}$ for $1 \leq j \leq r$ when $|\Delta(S)|<2$. And when $\Delta(S)=\{u, v\}$ there are 2^{n-r-1} with monochromatic $\left\{u_{j}, v_{j}\right\}$ and bichromatic $\{u, v\}$. So we want to show that the algorithm for G takes fewer then $2 r^{2}$ iterations when G is strongly r-closed.

For $k \geq 1$, let $u_{k}-v_{k}$ be the first new edge added to G that is disjoint from $\left\{u_{j}, v_{j}\right\}$ for $1 \leq j<k$. At most r such edges exist, by "strongness"; and each of them
is followed by at most $2 r-3$ new edges that touch u_{j} or v_{j}. So the total number of steps to find G^{*} is at most $r(2 r-2)+1<2 r^{2}$.
(g) Exercise 84 tells us that $q<\binom{p}{2}+(p+1)\binom{n}{2}$. Thus we have either $2(r-1)^{3} p \geq$ $\binom{n}{3}-(r-1)^{2}(n-2)$ or $\binom{p}{2}+(p+1)\binom{n}{2}>2^{r-1} / r^{2}$. Both lower bounds for p are

$$
\frac{1}{12}\left(\frac{n}{6 \lg n}\right)^{3}\left(1+O\left(\frac{\log \log n}{\log n}\right)\right) \quad \text { when } \quad r=\left\lceil\lg \left(\frac{n^{6}}{186624(\lg n)^{4}}\right)\right\rceil .
$$

[Noga Alon and Ravi B. Boppana, Combinatorica 7 (1987), 1-22, proceeded in this way to prove, among other things, the lower bound $\Omega(n / \log n)^{s}$ for the number of \wedge 's in any monotone chain that decides whether or not G has a clique of fixed size $s \geq 3$.] 87. The entries of X^{3} are at most n^{2} when X is a $0-1$ matrix. A Boolean chain with $O\left(n^{\lg 7}(\log n)^{2}\right)$ gates can implement Strassen's matrix multiplication algorithm 4.6.4-(36), on integers modulo $2\left\lfloor^{\left\lfloor\lg n^{2}\right\rfloor+1}\right.$.

INDEX AND GLOSSARY

When an index entry refers to a page containing a relevant exercise, see also the answer to that exercise for further information. An answer page is not indexed here unless it refers to a topic not included in the statement of the exercise.

0-1 matrices, 29, 34, 57.
2^{m}-way multiplexer, 13,31
3 -variable functions, $8-9$.
4 -variable functions, $2-9,16-18,26,30,33$.
5 -variable functions, v, 9-10, 30, 48 .
νx (sideways sum), v, $12,30,42,44$.
π (circle ratio), as "random" example, $2,22,32,38$.
π function, $2,22,29,34,38$.
Addition modulo 3 and 5, 33 .
Addition modulo 4, 30.
Adjacency matrix, 27, 37.
Affine functions, 39-40.
Aiken, Howard Hathaway, 8.
All-equal function ($S_{0 n}$), 35 .
Alon, Noga (נגה אלון), 55, 57.
Analysis of algorithms, 34 .
AND gates (\wedge), 1 .
with vacuum tubes, 8 .
AND-OR chains, 29, 36-37.
AND-OR-NOT chains, 35, see also Canalizing chains.
Approximately decomposable functions, 52.
Ashenhurst, Robert Lovett, 21, 24.
Associative operators, 42, 43, 46.
Asymptotic methods, 13-16, 32-33.
Babbage, Charles, 20, 45, 50, 51.
Babbage, Henry Provost, 45.
Backward-computation principle, 6.
Bad pairs, 22-24, 34-35.
Bell Telephone Laboratories, 19.
Berlekamp, Elwyn Ralph, 49.
Bigraph: A bipartite graph.
Binary addition, 11-12, 31-32.
Binary comparison function, 24, 51-53.
Binary decoder, 13, 43.
Binary recurrences, 12, 13, 30, 43.
Binary trees, 1, 2, 47.
Binary-coded decimal digits, 18.
Bipartite graphs, 24, 37, 51.
Bipartite matching, 29.
Bitwise operations, 4-6, 30, 39, 56.
Blum, Norbert Karl, 26.
Boole, George, 46.
Boolean chains, 0-57.
AND-OR, 29, 36-37.
AND-OR-NOT, 30, 35, 47.
canalizing, 30, 36, 47.
definition of, 0 .
monotone, 29, 36-37.
of 3 variables, $8-9$.
of 4 variables, $2-9,16-18,26,30,33$.
of 5 variables, v, $9-10,30,48$.
of many variables, 13-16, 21-37.
optimization of, 25-26, 52 .
with several outputs, 11-13, 16-21, 25-26, 30-34.
Bootstrapping, 42, 47.
Boppana, Ravi Babu, 55, 57.
Boros, Endre, 24.
Bottom-up synthesis, 7-9, 30, 40.
Brayton, Robert King, 26.
Brent, Richard Peirce, 45.
Büchi, Julius Richard, 28.
BUT-NOT operator (इ), 1, 4, 14.
$C(f), 1,15-16$, see Cost of a Boolean function.
$C\left(f_{1} \ldots f_{m}\right), 11$.
$C^{+}(f), 36$.
$C_{m}(f), 6-7,30$.
Canalizing chains, 30, 36, 47.
Canalizing operators, 27, 30, 40, 54.
Cares, 33, 51, see also Don't-cares.
Carry bits, 11, 31, 32, 46.
Cat's game, 19, 21, 50.
Circuits, Boolean, 1, see Boolean chains.
Cliques, 57.
Closure under intersection, 36 .
CNF: Conjunctive normal form, 1, 40, 48.
Coloring of graphs, 24-25.
Combinational complexity, 1, 15-16, see Cost of a Boolean function.
Comparator modules, 31 .
Comparison function, binary, 24, 51-53.
Complement of a Boolean function, $3-4,11,41$.
Complete bipartite graphs, 37, 56 .
Composition of functions, 46.
Conditional-sum adders, 31-32.
Consecutive 1s, 31, 32.
Control grids, 8 .
Conway, John Horton, 49.
Cost of a Boolean function, 1, 11, 15-16, 30-36.
statistics, 5, 9, 40-41.
Curtis, Herbert Allen, 0, 25.
$D(f), 3$, see Depth of a Boolean function. De Micheli, Giovanni, 26.
Decomposition of functions, 21-25, 34-35.
Decomposition of partial functions, 24-25.
Depth of a Boolean function, 3, 4, 28-32, 36.
statistics, 5, 9, 40-41.

Depth－first search， 52.
Determinants，25， 34.
Diagonalization， 28.
Disjoint decomposition，21－24．
Distributive law， 29.
Divide and conquer，13，42－45．
DNF：Disjunctive normal form， $1,48$.
Don＇t－cares，18，20，24－26，33，35， 51.
Electrical engineers， $0,1,9,11,13,18,26$.
Elgot，Calvin Creston， 28.
Evaluation of Boolean functions，0－57， see Boolean chains．

Fan－in：The number of inputs to a gate， $1,8,28$ ．
Fan－out：The number of uses of a gate， $1,8,46$ ．
Fibonacci，Leonardo，of Pisa（ $=$ Leonardo filio Bonacci Pisano），numbers，43， 45.
threshold functions， 29.
Finikov，Boris Ivanovich（Фиников， Борис Иванович）， 29.
Finite state transducers， 32.
Fischer，Michael John，31， 32.
Five－variable functions，v，9－10，30， 48.
Footprints，iv，4－5，17，18，26，29，30，48－49．
Formula complexity，see Length of a Boolean function．
Four－variable functions， $2-9,16-18$ ， $26,30,33$.
Free trees， 54 ．
Full adders，11－12，30，41，46， 51.
Functional decomposition，21－25，34－35．
Games，see Tic－tac－toe．
Gardner，Martin， 50.
Gates，1， 8.
Generalized consensus， 24.
Good pairs，22，34－35．
GOST cipher， 33.
Gray，Frank，binary code， 43.
Greedy algorithm， 17.
Greedy－footprint heuristic，17－18，26，48－49．
Gurvich，Vladimir Alexander（Гурвич， Владимир Александрович）， 24.
Guy，Richard Kenneth， 49.
Hachtel，Gary Deane， 26.
Half adders，11－12．
Hammer，Péter László（ $=$ Peter Leslie $=$ Ivănescu，Petru Ladislav）， 24.
Harvard University Computation Laboratory，30， 41.
Hellerman，Leo，8－9．
Hexadecimal notation for truth tables， 9，36， 48.
Hight，Stuart Lee， 24.
Horn，Alfred，clauses，23， 52.

Ibaraki，Toshihide（茨木俊秀）， 24.
If－then－else function（mux）， $0,38,42,44,46$.
Incompatible columns， 24.
Internet，ii，iii．

k－ary trees， 28.

k－cubes， 33 ．
k－in－a－row function， 31.
Karp，Richard Manning， 25.
Khrapchenko，Valerii Mikhailovich
（Храпченко，Валерий Михайлович）， 45.

Klein，Peter， 31.
Knuth，Donald Ervin（高德纳），i，iv， $9,19,45$.
Kogan，Alexander（Коган，Александр Юриевич）， 24.
Krichevsky，Rafail Evseevich（Кричевский， Рафаил Евсеевич）， 47.
Krom，Melven Robert，clauses， 52.
Kung，Hsiang Tsung（孔祥重）， 45.
$L(f), 3$ ，see Length of a Boolean function． Ladner，Richard Emil，31， 32.
Legitimate lattices of functions， 36,37 ．
Length of a Boolean function，3，7，29， 49. statistics，5，9，40－41．
Liang，Franklin Mark，iv， 9.
Lo Shu magic square， 49.
Local optimizations， 25.
Logic，27－28， 36.
Lower bounds on combinational complexity， $7-8,13-16,26-28,35-36$.
Lupanov，Oleg Borisovich（Лупанов，Олег Борисович），14，16，33，42，47， 49.

Magic Fifteen， 33.
Magic square， 49.
Majority operation， $\mathrm{v}, 8$.
Matching， 23.
Mates in a Boolean chain， 35 ．
Matrix multiplication， 57.
McKellar，Archie Charles，22，24， 35.
Median operation，v，6， 29.
Meyer，Albert Ronald da Silva，27，28， 55.
Minimum－memory evaluation，5－7， $10,29,30,43$.
Minterms，13，15， 30 ．
MMIX，ii．
Monadic logic：Logic with only unary operators，27－28， 36.
Monotone Boolean chains，29，36－37．
Monotone complexity，10，29，36－37．
Muller，David Eugene， 44.
Multilevel logic synthesis， 26.
Multilinear representation of a Boolean function，34， 40.
Multiple outputs，11－13，16－21，25－26， 30－34．

Multiplexer，2－way，see Mux． 2^{m}－way，13，31， 35.
Museum of Science and Industry， 19.
Mux（multiplex）operation，0，38，42，44， 46.
NAND operation（ $\bar{\wedge}), 40$.
with vacuum tubes， 8 ．
Nechiporuk，Eduard Ivanovich（Нечипорук， Едуард Иванович）， 49.
NOR gates $(\bar{\vee}), 8-9$ ．
Normal Boolean functions， $4,6,14$ ， $17,29,41,53$.
Normalization，4， 38.
NOT－BUT operation（ $\bar{\subset}$ ）， 1,4 ．
Notational conventions，v， 36 ．
$\langle x y z\rangle, \mathrm{v}$ ，see Median operation．
Noughts and crosses，see Tic－tac－toe．
Ofman，Yuri Petrovich（Офман，Юрий Петрович）， 46.
Optimization of Boolean chains，25－26， 52 ．
Optimum Boolean evaluation， $7-9$ ．
OR gates $(\vee), 1$ ．
with vacuum tubes， 8 ．
Oriented binary trees， 47.
Overlapping subtrees， 1.
Parallel addition，12，31－32， 46.
Parallel computation，12， 28.
Parity function，2，9，35，36， 41.
Partial functions，17－18， 35.
Paterson，Michael Stewart，iv，30， 31.
Paul，Wolfgang Jakob， 35.
Permanent of a matrix，23， 29.
$\mathrm{Pi}(\pi)$ ，as＂random＂example， $2,22,32,38$.
Pi function，2，22，29，34， 38.
Pigeonhole principle， 56.
Pippenger，Nicholas John， 49.
Pratt，Vaughan Ronald， 29.
Prefix problem，31， 36.
Prefixes of strings， 36 ．
Preparata，Franco Paolo， 44.
Prime clauses， 33.
Prime implicants，33， 54.
Prime－number function，14， 33.
Priority encoders， 31.
r－closed graphs， 37.
r－families of edges， 37 ．
Randomization，22， 34.
Razborov，Alexander Alexandrovich （Разборов，Александр Александрович）， 29.
Recurrence relations，42， 44.
binary，12，13，30， 43.
Recursive procedures，38， 42.
Red＇kin，Nikolai Petrovich（Редькин， Николай Петрович），11，26，35， 53.
Registers，5－7， 30.
Riordan，John， 47.

S－boxes， 33.
$S_{k_{1} \ldots k_{t}}(x)$ notation， v ，see Symmetric functions．
Sangiovanni－Vincentelli，Alberto Luigi， 26.
Savage，John Edmund， 46.
Schnorr，Claus－Peter， 35.
Schroeppel，Richard Crabtree，iv， 30.
Second－order logic， 28.
Selection function，see Mux．
Self－reference，28， 60.
Seneca，Lucius Annæas，iii．
Series－parallel switching networks， 47.
Seven－segment display，16－18， 33.
Shannon，Claude Elwood，Jr．，14，46， 47.
Shen，Vincent Yun－Shen（沈運申）， $22,24,35$.
Sholomov，Lev Abramovich（Шоломов， Лев Абрамович），33， 51.
Sideways addition function (νx) ， v ， $12,30,42,44$.
Sklansky，Jack， 44.
Smith，John Lynn， 45.
Snir，Marc（מרכ שניר），31， 36.
Sorting networks，31， 43.
Spira，Philip Martin， 29.
Stanford GraphBase，ii，iii， 45.
Stanford University InfoLab，v．
Stein，Sherman Kopald， 49.
Stockmeyer，Larry Joseph，27，28，36，42， 55.
Storage access function， 13.
Straight－line computation，see Boolean chains．
Strassen，Volker， 57.
Strong components， 52.
Subcubes，33， 47.
Suffixes of strings， 36 ．
Sun Microsystems Laboratories，v．
Symmetric functions，v，2－3，8－10，12， $13,30,35,36,41,42$.

Tarjan，Robert Endre， 52.
Ternary Boolean functions，8－9．
Thoreau，David Henry（＝Henry David）， 0.
Threshold functions， 43.
Tic－tac－toe，18－21，33－34， 49.
Top－down synthesis，7－9，30， 40.
Topological sorting， 1 ．
Triangle function， 37 ．
Trivial functions， 41.
Truth tables，2，4，6，9， 46.
in hexadecimal notation，9，36， 48.
of partial functions，18－20．
two－dimensional，14－15，21－25，49， 51.

Uhlig，Dietmar， 35.
Upper bounds on combinational complexity， 14－16，33，see also Footprints．

Vacuum-tube circuits, 8, 30.
Vector-valued Boolean functions, 11, 25.
Wakerly, John Francis, 51.
Weak second-order logic, 27-28, 36.
Wegener, Ingo Werner, 28, 42.
Weinberger, Arnold, 45.

Weiner, Peter Gallegos, 22, 24, 35.
Wood, Frank W., 16.
XOR gates $(\oplus), 1$.

Zuse, Konrad, 46.

[^0]: * This setup is based on an exhibit from the early 1950s at the Museum of Science and Industry in Chicago, where the author was first introduced to the magic of switching circuits. The machine in Chicago, designed by researchers at Bell Telephone Laboratories, allowed me to go first; yet I soon discovered that there was no way to defeat it. Therefore I decided to move as stupidly as possible, hoping that the designers had not anticipated such bizarre behavior. In fact I allowed the machine to reach a position where it had two winning moves; and it seized both of them! Moving twice is of course a flagrant violation of the rules, so I had won a moral victory even though the machine announced that I had lost.

[^1]: * Technically speaking, the sentences of L belong to "weak second-order monadic logic with one successor." Weak second-order logic allows quantification over finite sets; monadic logic with k successors is the theory of unlabeled k-ary trees.

